Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Symmetry Breaking and Emergence of Directional Flows in Minimal Actomyosin Cortices

Version 1 : Received: 31 March 2020 / Approved: 2 April 2020 / Online: 2 April 2020 (04:02:53 CEST)

A peer-reviewed article of this Preprint also exists.

Vogel, S.K.; Wölfer, C.; Ramirez-Diaz, D.A.; Flassig, R.J.; Sundmacher, K.; Schwille, P. Symmetry Breaking and Emergence of Directional Flows in Minimal Actomyosin Cortices. Cells 2020, 9, 1432. Vogel, S.K.; Wölfer, C.; Ramirez-Diaz, D.A.; Flassig, R.J.; Sundmacher, K.; Schwille, P. Symmetry Breaking and Emergence of Directional Flows in Minimal Actomyosin Cortices. Cells 2020, 9, 1432.

Abstract

Cortical actomyosin flows, among other mechanisms, scale up spontaneous symmetry breaking and thus play pivotal roles in cell differentiation, division, and motility. According to many model systems, myosin motor-induced local contractions of initially isotropic actomyosin cortices are nucleation points for generating cortical flows. However, the positive feedback mechanisms by which spontaneous contractions can be amplified towards large-scale directed flows remain mostly speculative. To investigate such a process on spherical surfaces, we reconstituted and confined initially isotropic minimal actomyosin cortices to the interfaces of emulsion droplets. The presence of ATP leads to myosin-induced local contractions that self-organize and amplify into directed, large-scale actomyosin flows. By combining our experiments with theory, we found that the feedback mechanism leading to a coordinated, directional motion of actomyosin clusters can be described as asymmetric cluster vibrations, caused by intrinsic non-isotropic ATP consumption, in conjunction with spatial confinement. By tracking individual actomyosin clusters, we identified fingerprints of vibrational states as the basis of directed motions. These vibrations may represent a generic key driver of directed actomyosin flows under spatial confinement in vitro and in living systems.

Keywords

bottom-up synthetic biology; motor proteins; pattern formation; self-organization

Subject

Biology and Life Sciences, Biophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.