Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

ChREBP Rather than SHP Regulates Hepatic VLDL Secretion

Version 1 : Received: 6 February 2018 / Approved: 8 February 2018 / Online: 8 February 2018 (16:27:41 CET)

How to cite: Niwa, H.; Iizuka, K.; Kato, T.; Wu, W.; Tsuchida, H.; Takao, K.; Horikawa, Y.; Takeda, J. ChREBP Rather than SHP Regulates Hepatic VLDL Secretion. Preprints 2018, 2018020073. https://doi.org/10.20944/preprints201802.0073.v1 Niwa, H.; Iizuka, K.; Kato, T.; Wu, W.; Tsuchida, H.; Takao, K.; Horikawa, Y.; Takeda, J. ChREBP Rather than SHP Regulates Hepatic VLDL Secretion. Preprints 2018, 2018020073. https://doi.org/10.20944/preprints201802.0073.v1

Abstract

The regulation of hepatic very-low-density lipoprotein (VLDL) secretion plays an important role in the pathogenesis of dyslipidemia and fatty liver diseases. VLDL is controlled by hepatic microsomal triglyceride transfer protein (MTTP). Mttp is regulated by carbohydrate response element binding protein (ChREBP) and small heterodimer partner (SHP). However, it is unclear whether both coordinately regulate Mttp expression and VLDL secretion. Here, adenoviral overexpression of ChREBP and SHP in rat primary hepatocytes induced and suppressed Mttp mRNA, respectively. However, Mttp induction by ChREBP was much more potent than suppression by SHP. Promoter assays of Mttp and the liver type pyruvate kinase gene revealed that SHP and ChREBP did not affect the transactivity of each other. Mttp mRNA and protein levels of Shp/– mice were similar to those of wild-type; however, those of Chrebp–/–Shp–/– and Chrebp–/– mice were much lower. Consistent with this, the VLDL particle number and VLDL secretion rates in Shp–/–- mice were similar to wild-type, but were much lower in Chrebp–/– and Chrebp–/–Shp–/–- mice. These findings suggested that ChREBP rather than SHP regulates VLDL secretion and that ChREBP and SHP do not affect the transactivities of each other.

Keywords

carbohydrate response element binding protein; small heterodimer partner; microsomal triglyceride transfer protein; very-low-density lipoprotein

Subject

Medicine and Pharmacology, Endocrinology and Metabolism

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.