Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought Involves Impaired Coordination of Transcriptomic and Proteomic Response and Regulation of Various Multifunctional Proteins

Version 1 : Received: 29 January 2018 / Approved: 30 January 2018 / Online: 30 January 2018 (04:17:44 CET)

A peer-reviewed article of this Preprint also exists.

Rurek, M.; Czołpińska, M.; Pawłowski, T.A.; Staszak, A.M.; Nowak, W.; Krzesiński, W.; Spiżewski, T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int. J. Mol. Sci. 2018, 19, 1130. Rurek, M.; Czołpińska, M.; Pawłowski, T.A.; Staszak, A.M.; Nowak, W.; Krzesiński, W.; Spiżewski, T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int. J. Mol. Sci. 2018, 19, 1130.

Abstract

The early generative phase of cauliflower (Brassica oleracea var. botrytis) curd ripening is sensitive to the water deficit. Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate the mitochondrial biogenesis of three cauliflower cultivars varying with drought tolerance. Diverse quantitative changes (down-regulations mostly) in the mitochondrial proteome were assayed by 2D PAGE coupled with LC-MS/MS. Respiratory (e.g. CII, CIV and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g. components of RNA editing machinery) appeared diversely affected in their abundance under two drought levels. Western immunoassays showed also cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides found in few 2D spots that appeared immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The level of selected messengers participating in drought response was also determined. We conclude that the mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars and associated with drought tolerance on the proteomic and functional levels. However, transcriptomic and proteomic regulations were largely uncoordinated due to the suggested altered availability of messengers for translation, mRNA/ribosome interactions and/or miRNA impact on transcript abundance and translation.

Keywords

dehydrins; 2D PAGE; drought; mitochondrial biogenesis; mitochondrial proteome; plant transcriptome

Subject

Biology and Life Sciences, Plant Sciences

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.