Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Port Accessibility Depends on Cascading Interactions between Fleets, Policies, Infrastructure, and Hydrodynamics

Version 1 : Received: 13 May 2024 / Approved: 16 May 2024 / Online: 16 May 2024 (18:24:19 CEST)

How to cite: Bakker, F. P.; van der Werff, S.; Baart, F.; Kirichek, A.; de Jong, S.; van Koningsveld, M. Port Accessibility Depends on Cascading Interactions between Fleets, Policies, Infrastructure, and Hydrodynamics. Preprints 2024, 2024051124. https://doi.org/10.20944/preprints202405.1124.v1 Bakker, F. P.; van der Werff, S.; Baart, F.; Kirichek, A.; de Jong, S.; van Koningsveld, M. Port Accessibility Depends on Cascading Interactions between Fleets, Policies, Infrastructure, and Hydrodynamics. Preprints 2024, 2024051124. https://doi.org/10.20944/preprints202405.1124.v1

Abstract

Reducing waiting times is crucial for ports to be efficient and competitive. Important causes of waiting times are cascading interactions between realistic hydrodynamics, accessibility policies, vessel-priority rules, and detailed berth availability. The main challenges are determining the cause of waiting and finding rational solutions to reduce waiting time. In this study, we focus on the role of the design depth of a channel on the waiting times. We quantify the performance of channel depth for a representative fleet rather than the common approach of a single normative design vessel. It relies on a mesoscale agent-based discrete-event model that can take processed Automatic Identification System and hydrodynamic data as its main input. The presented method’s validity is assessed by hindcasting one year of observed anchorage area laytimes for a liquid bulk terminal in the Port of Rotterdam. The hindcast demonstrates that the method predicts the causes of 73.4% of the non-excessive laytimes of vessels, thereby correctly modelling 60.7% of the vessels-of-call. Following a recent deepening of the access channel, cascading waiting times due to tidal restrictions were found to be limited. Nonetheless, the importance of our approach is demonstrated by testing alternative maintained bed level designs, revealing the method’s potential to support rational decision-making in coastal zones.

Keywords

port performance; Automatic Identification System data; mesoscopic traffic model; tidal windows; representative fleet

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.