Preprint Article Version 2 Preserved in Portico This version is not peer-reviewed

On How to Measure the Subdivision Potential in Nanothermodynamics

Version 1 : Received: 12 February 2024 / Approved: 13 February 2024 / Online: 15 February 2024 (03:10:31 CET)
Version 2 : Received: 28 February 2024 / Approved: 4 March 2024 / Online: 6 March 2024 (04:15:04 CET)

How to cite: Bedeaux, D.; Kjelstrup, S. On How to Measure the Subdivision Potential in Nanothermodynamics. Preprints 2024, 2024020742. https://doi.org/10.20944/preprints202402.0742.v2 Bedeaux, D.; Kjelstrup, S. On How to Measure the Subdivision Potential in Nanothermodynamics. Preprints 2024, 2024020742. https://doi.org/10.20944/preprints202402.0742.v2

Abstract

We discuss a central concept of nanothermdynamics; the subdivision potential. We explain how it can be measured or calculated for some typical ensembles, as this has been disputed in the literature. We proceed to discuss its meaning for particular systems, and predict scaling laws for three ensembles. The laws depend on the small system geometry in a predictable way for an ideal gas model with surface adsorption. We provide new equations which relate the subdivision potential to experimental investigations, and give expressions for grand canonical ensembles of spheres, cylinders, slit pores and fluids confined in porous media. The subdivision potential is not compatible with the popular Hadwiger theorem in geometry, and can therefore not be described by a Minkowski set of variables. It is equivalent to Gibbs descriptions when shape- and size variables are defined.

Keywords

Nanothermodynamics; Subdivision potential; Porous media; Shape dependence; Scaling laws

Subject

Physical Sciences, Thermodynamics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.