Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Advances in Droplet-Based Microfluidic High-Throughput Screening Based on Ultraviolet, Visible and Fluorescent Spectroscopy

Version 1 : Received: 25 December 2023 / Approved: 25 December 2023 / Online: 26 December 2023 (03:59:38 CET)

A peer-reviewed article of this Preprint also exists.

Hu, S.; Wang, B.; Luo, Q.; Zeng, R.; Zhang, J.; Cheng, J. Advances in Droplet-Based Microfluidic High-Throughput Screening of Engineered Strains and Enzymes Based on Ultraviolet, Visible, and Fluorescent Spectroscopy. Fermentation 2024, 10, 33. Hu, S.; Wang, B.; Luo, Q.; Zeng, R.; Zhang, J.; Cheng, J. Advances in Droplet-Based Microfluidic High-Throughput Screening of Engineered Strains and Enzymes Based on Ultraviolet, Visible, and Fluorescent Spectroscopy. Fermentation 2024, 10, 33.

Abstract

Genetic engineering and directed evolution are effective methods to address the low yield and poor industrialization level of microbial target products. The current research focus is on how to efficiently and rapidly screen beneficial mutants from constructed large-scale mutation libraries. Traditional screening methods such as plate screening and well plate screening are severely limited in their development and application due to their low efficiency and high costs. In the past decade, microfluidic technology has become an important high-throughput screening technology due to its fast speed, low cost, high automation, and high screening throughput, and it has developed rapidly. Droplet-based microfluidic high-throughput screening has been widely used in various fields such as strain/enzyme activity screening, pathogen detection, single-cell analysis, drug discovery, and chemical synthesis, and has been widely applied in industries such as materials, food, chemicals, textiles, and biomedicine. In particular, in the field of enzyme research, droplet-based microfluidic high-throughput screening has shown excellent performance in discovering enzymes with new functions, improved catalytic efficiency or stability, acid-base tolerance, etc. Currently, droplet-based microfluidic high-throughput screening technology has achieved high-throughput screening of enzymes such as glycosidase, lipase, peroxidase, protease, amylase, oxidase, and transaminase, as well as high-throughput detection of products such as riboflavin, coumarin, 3-dehydroquinate, lactic acid, and ethanol. This article reviews the application of droplet-based microfluidics in high-throughput screening, with a focus on high-throughput screening strategies based on UV, visible, and fluorescence spectroscopy, including labeled optical signal detection screening, as well as label-free electrochemical detection, mass spectrometry, Raman spectroscopy, nuclear magnetic resonance, etc. Furthermore, the research progress and development trends of droplet-based microfluidic technology in enzyme modification and strain screening are also introduced.

Keywords

droplet-based microfluidics; high-throughput screening; ultraviolet spectrum; visible spectrum; fluorescence spectrum

Subject

Engineering, Bioengineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.