Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Adsorption of Metals Ions From Single and Binary Aqueous Systems on Bio – Nanocomposite, Alginate – Clay

Version 1 : Received: 23 November 2023 / Approved: 23 November 2023 / Online: 23 November 2023 (10:02:19 CET)

A peer-reviewed article of this Preprint also exists.

Aziam, R.; Stefan, D.S.; Nouaa, S.; Chiban, M.; Boșomoiu, M. Adsorption of Metal Ions from Single and Binary Aqueous Systems on Bio−Nanocomposite, Alginate–Clay. Nanomaterials 2024, 14, 362. Aziam, R.; Stefan, D.S.; Nouaa, S.; Chiban, M.; Boșomoiu, M. Adsorption of Metal Ions from Single and Binary Aqueous Systems on Bio−Nanocomposite, Alginate–Clay. Nanomaterials 2024, 14, 362.

Abstract

The results of the investigation showed that second-order kinetics govern the adsorption process, and the corresponding rate constants were found. To evaluate the parameters related to the adsorption process, the adsorption equilibrium was examined using a variety of mathematical models, such as the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models. The Langmuir isotherm was found to be the best appropriate among all models for describing the adsorption of Cu2+ and Ni2+ ions using bio-nanocomposite beads. The positive values of ΔH° indicate that the adsorption is physical and endothermic, in agreement with experimental results. The negative value of ∆G° shows that the adsorption process is spontaneous. Positive ΔS° values indicate increased randomness at the solid/liquid interface, during adsorption of Cu2+ and Ni2+ cations onto the engineered bio-nanocomposite. The maximum adsorbed amounts of metal ions by the bio-nanocomposite used were 370.37 mg/g for Ni2+ and 454.54 mg/g for Cu2+ from single system. For the binary system, according to the Langmuir isotherm, the maximum adsorbed amounts of Ni2+ and Cu2+ were 357.14 mg/g and 370,37 mg/g, respectively. There is proof that Alginate-Moroccan clay bio-nanocomposites can serve as a different, less expensive source of sorbents for the removal of metal ions from single and binary systems.

Keywords

bio-nanocomposite; alginate; heavy metals; Moroccan natural clay

Subject

Environmental and Earth Sciences, Water Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.