Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Photocatalytic and Cathode Active Abilities of Ni-Substituted α-FeOOH Nanoparticles

Version 1 : Received: 20 August 2023 / Approved: 21 August 2023 / Online: 21 August 2023 (07:21:12 CEST)

A peer-reviewed article of this Preprint also exists.

Ibrahim, A.; Shiraishi, M.; Homonnay, Z.; Krehula, S.; Marciuš, M.; Bafti, A.; Pavić, L.; Kubuki, S. Photocatalytic and Cathode Active Abilities of Ni-Substituted α-FeOOH Nanoparticles. Int. J. Mol. Sci. 2023, 24, 14300. Ibrahim, A.; Shiraishi, M.; Homonnay, Z.; Krehula, S.; Marciuš, M.; Bafti, A.; Pavić, L.; Kubuki, S. Photocatalytic and Cathode Active Abilities of Ni-Substituted α-FeOOH Nanoparticles. Int. J. Mol. Sci. 2023, 24, 14300.

Abstract

The present study investigates the relationship between the local structure, photocatalytic ability, and cathode performances in sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) using Ni-substituted goethite nanoparticles (NixFe1-xOOH NPs) with a range of 'x' values from 0 to 0.5. The structural characterization was performed applying various techniques, including X-ray diffractometry (XRD), Thermogravimetry differential thermal analysis (TG-DTA), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray absorption spectroscopy (XANES/EXAFS), both measured at room temperature (RT), and 57Fe Mössbauer spectroscopy recorded at RT and at low temperatures (LT) from 20 K to 300 K, Brunauer-Emmett-Teller surface area measurement (BET), and diffuse reflectance spectroscopy (DRS). In addition, the electrical properties of NixFe1-xOOH NPs were evaluated by impedance spectroscopy. XRD showed the presence of goethite as the only crystalline phase in prepared samples with x ≤ 0.20, and goethite and α-Ni(OH)2 in the samples with x > 0.20. Sample with x = 0.10 (Ni10) showed the highest photo-Fenton ability with a first-order rate constant value (k) of 15.8×10-3 min-1. The 57Fe Mössbauer spectrum of Ni0, measured at RT, displayed a sextet corresponding to goethite, with an isomer shift (δ) of 0.36 mm s-1 and a hyperfine magnetic distribution (Bhf) of 32.95 T. Moreover, the DC conductivity decreased from 5.52×10-10 to 5.30×10-12 (Ω.cm)–1 with 'x' increasing from 0.10 to 0.50. Ni20 showed the highest initial discharge capacity of 223 mAh g-1, attributed to its largest specific surface area of 174.0 m2 g-1. In conclusion, NixFe1-xOOH NPs can be effectively utilized as visible-light-activated catalysts and active cathode materials in secondary batteries.

Keywords

goethite nanoparticles; impedance spectroscopy; Fourier Transform Infrared Spectros-copy (FT-IR); visible-light activated photocatalyst; cathode active material; sodium-ion batteries; lithium-ion batteries

Subject

Chemistry and Materials Science, Nanotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.