Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Machine Learning Dynamic Ensemble Methods for Solar Irradiance and Wind Speed Predictions

Version 1 : Received: 7 August 2023 / Approved: 8 August 2023 / Online: 9 August 2023 (10:56:29 CEST)

A peer-reviewed article of this Preprint also exists.

Vidal Bezerra, F.D.; Pinto Marinho, F.; Costa Rocha, P.A.; Oliveira Santos, V.; Van Griensven Thé, J.; Gharabaghi, B. Machine Learning Dynamic Ensemble Methods for Solar Irradiance and Wind Speed Predictions. Atmosphere 2023, 14, 1635. Vidal Bezerra, F.D.; Pinto Marinho, F.; Costa Rocha, P.A.; Oliveira Santos, V.; Van Griensven Thé, J.; Gharabaghi, B. Machine Learning Dynamic Ensemble Methods for Solar Irradiance and Wind Speed Predictions. Atmosphere 2023, 14, 1635.

Abstract

In this paper, solar irradiance and wind speed forecasts were performed considering time horizons ranging from 10 min to 60 min, under a 10 min time-step. Global horizontal irradiance (GHI) and wind speed were computed using four forecasting models (Random Forest, k-Nearest Neighbours, Support Vector Regression, and Elastic Net) to compare their performance against two alternative dynamic ensemble methods (windowing and arbitrating). Forecasting models and dynamic forecasting ensembles were implemented in Python for performance evaluation. The performance comparison between the prediction models and the dynamic ensemble methods was carried out by evaluating the RMSE, MAE, R² and MAPE, to evaluate whether the dynamic ensemble forecasting method obtained greater. According to the results obtained windowing dynamic ensemble method was the most efficient among the tested. For the wind speed data, by varying its parameter λ (from 1 to 100), a variable performance profile was obtained, where from λ =1 to λ = 74, windowing proved to be the most efficient, reaching maximum efficiency for λ = 19. Windowing was the best method for the GHI analysis, reaching its best performance for λ = 1. The efficiency gain using windowing was 0.56% when using the wind speed model and 1.96% for GHI.

Keywords

wind energy; solar energy; renewable energy; machine learning; forecasting ensembles

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.