Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Functional Deutsch Uncertainty Principle

Version 1 : Received: 14 July 2023 / Approved: 17 July 2023 / Online: 17 July 2023 (10:53:06 CEST)

How to cite: KRISHNA, K.M. Functional Deutsch Uncertainty Principle. Preprints 2023, 2023071084. https://doi.org/10.20944/preprints202307.1084.v1 KRISHNA, K.M. Functional Deutsch Uncertainty Principle. Preprints 2023, 2023071084. https://doi.org/10.20944/preprints202307.1084.v1

Abstract

Let $\{f_j\}_{j=1}^n$ and $\{g_k\}_{k=1}^m$ be Parseval p-frames for a finite dimensional Banach space $\mathcal{X}$. Then we show that \begin{align}\label{UE} \log (nm)\geq S_f (x)+S_g (x)\geq -p \log \left(\displaystyle\sup_{y \in \mathcal{X}_f\cap \mathcal{X}_g, \|y\|=1}\left(\max_{1\leq j\leq n, 1\leq k\leq m}|f_j(y)g_k(y)|\right)\right), \quad \forall x \in \mathcal{X}_f\cap \mathcal{X}_g, \end{align} where \begin{align*} &\mathcal{X}_f\coloneqq \{z\in \mathcal{X}: f_j(z)\neq 0, 1\leq j \leq n\}, \quad \mathcal{X}_g\coloneqq \{w\in \mathcal{X}: g_k(w)\neq 0, 1\leq k \leq m\},\\ &S_f (x)\coloneqq -\sum_{j=1}^{n}\left|f_j\left(\frac{x}{\|x\|}\right)\right|^p\log \left|f_j\left(\frac{x}{\|x\|}\right)\right|^p, \quad S_g (x)\coloneqq -\sum_{k=1}^{m}\left|g_k\left(\frac{x}{\|x\|}\right)\right|^p\log \left|g_k\left(\frac{x}{\|x\|}\right)\right|^p, \quad \forall x \in \mathcal{X}_g. \end{align*} We call Inequality (1) as \textbf{Functional Deutsch Uncertainty Principle}. For Hilbert spaces, we show that Inequality (1) reduces to the uncertainty principle obtained by Deutsch \textit{[Phys. Rev. Lett., 1983]}. We also derive a dual of Inequality (1).

Keywords

uncertainty principle; orthonormal basis; parseval frame; hilbert space; banach space

Subject

Computer Science and Mathematics, Analysis

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.