Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A GPU-Accelerated Particle Advection Methodology for 3D Lagrangian Coherent Structures in High-Speed Turbulent Boundary Layers

Version 1 : Received: 17 May 2023 / Approved: 17 May 2023 / Online: 17 May 2023 (05:36:15 CEST)

A peer-reviewed article of this Preprint also exists.

Lagares, C.; Araya, G. A GPU-Accelerated Particle Advection Methodology for 3D Lagrangian Coherent Structures in High-Speed Turbulent Boundary Layers. Energies 2023, 16, 4800. Lagares, C.; Araya, G. A GPU-Accelerated Particle Advection Methodology for 3D Lagrangian Coherent Structures in High-Speed Turbulent Boundary Layers. Energies 2023, 16, 4800.

Abstract

In this work, we introduce a scalable and efficient GPU-accelerated methodology for volumetric particle advection and finite-time Lyapunov exponent (FTLE) calculation, focusing on the analysis of Lagrangian Coherent Structures (LCS) in large-scale Direct Numerical Simulation (DNS) datasets across incompressible, supersonic, and hypersonic flow regimes. LCS play a significant role in turbulent boundary layer analysis, and our proposed methodology offers valuable insights into their behavior in various flow conditions. Our novel owning-cell locator method enables efficient, constant-time cell search, and the algorithm draws inspiration from classical search algorithms and modern multi-level approaches in numerical linear algebra. The proposed method is implemented for both multi-core CPUs and Nvidia GPUs, demonstrating strong scaling up to 32,768 CPU cores and up to 62 Nvidia V100 GPUs. By decoupling particle advection from other problems, we achieve modularity and extensibility, resulting in consistent parallel efficiency across different architectures. Our methodology was applied to calculate and visualize the FTLE on four turbulent boundary layers at different Reynolds and Mach numbers, revealing that coherent structures grow more isotropic proportional to the Mach number, and their inclination angle varies along the streamwise direction. We also observed increased anisotropy and FTLE organization at lower Reynolds numbers, with structures retaining coherency along both spanwise and streamwise directions. Additionally, we demonstrated the impact of lower temporal frequency sampling by upscaling with an efficient linear upsampler, preserving general trends with only 10% of the required storage. In summary, we present a particle search scheme for particle advection workloads in the context of visualizing LCS via FTLE that exhibits strong scaling performance and efficiency at scale. Our proposed algorithm is applicable across various domains requiring efficient search algorithms in large structured domains. While this manuscript focuses on the methodology and its application to LCS, an in-depth study of the physics and compressibility effects in LCS candidates will be explored in a future publication.

Keywords

LCS; GPU Accelerated; Particle Advection; Distributed Memory Algorithms; High Speed 24 Turbulent Boundary Layers; DNS

Subject

Engineering, Aerospace Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.