Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Deep Learning to Near-Surface Humidity Retrieval from Multi-sensor Remote Sensing Data over the China Seas

Version 1 : Received: 4 July 2022 / Approved: 5 July 2022 / Online: 5 July 2022 (13:46:55 CEST)

A peer-reviewed article of this Preprint also exists.

Zhang, R.; Guo, W.; Wang, X. Deep Learning to Near-Surface Humidity Retrieval from Multi-Sensor Remote Sensing Data over the China Seas. Remote Sens. 2022, 14, 4353. Zhang, R.; Guo, W.; Wang, X. Deep Learning to Near-Surface Humidity Retrieval from Multi-Sensor Remote Sensing Data over the China Seas. Remote Sens. 2022, 14, 4353.

Abstract

Near-surface humidity (Qa) is a key parameter that modulates oceanic evaporation and influences the global water cycle. Remote sensing observations act as feasible sources for long-term and large-scale Qa monitoring. However, existing satellite Qa retrieval models are subject to apparent uncertainties due to model errors and insufficient training data. Based on in situ observations collected over the China Seas over the last two decades, a deep learning approach named Ensemble Mean of Target deep neural networks (EMTnet) was proposed to improve the satellite Qa retrieval over the China Seas for the first time. The EMTnet model outperforms five representative existing models by nearly eliminating the mean bias and significantly reducing the root-mean-square error in satellite Qa retrieval. According to its target deep neural networks selection process, the EMTnet model can obtain more objective learning results when the observational data are divergent. The EMTnet model was subsequently applied to produce a 30-year monthly gridded Qa data over the China Seas. It indicates that the climbing rate of Qa over the China Seas under the background of global warming are probably underestimated by current products.

Keywords

near-surface humidity; remote sensing; deep learning; China Seas

Subject

Environmental and Earth Sciences, Atmospheric Science and Meteorology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.