Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

SiO2 Coated Up-conversion Nanomaterial Doped with Ag Nanoparticles for Micro-CT Imaging

Version 1 : Received: 23 November 2021 / Approved: 24 November 2021 / Online: 24 November 2021 (13:04:14 CET)

A peer-reviewed article of this Preprint also exists.

Zhang, W.; Lu, Y.; Zang, Y.; Han, J.; Xiong, Q.; Xiong, J. SiO2 Coated Up-Conversion Nanomaterial Doped with Ag Nanoparticles for Micro-CT Imaging. Nanomaterials 2021, 11, 3395. Zhang, W.; Lu, Y.; Zang, Y.; Han, J.; Xiong, Q.; Xiong, J. SiO2 Coated Up-Conversion Nanomaterial Doped with Ag Nanoparticles for Micro-CT Imaging. Nanomaterials 2021, 11, 3395.

Abstract

In this study, a new method for synthesizing Ag-NaYF4:Yb3+/Er3+ @ SiO2 nanocomposites was introduced. Using a hydrothermal method, the synthesized Yb3+- and Er3+-codoped NaYF4 upconversion luminescent materials and Ag nanoparticles were doped into upconversion nanomaterials and coated with SiO2 up-conversion nanomaterials. This material is known as Ag-UCNPs-SiO2’ it improves both the luminous intensity because of the doped Ag nanoparticles and has low cytotoxicity because of the SiO2 coating. The morphology of UCNPs was observed using scanning electron microscopy (SEM), and the mapping confirmed the successful doping of Ag nanoparticles. Successful coating of SiO2 was confirmed using transmission electron microscopy (TEM). Fluorescence spectra were used to compare changes in luminescence intensity before and after doping Ag nanoparticles. The reason for the increase in luminescence intensity after doping with Ag nanoparticles was simulated using first-principles calculations. The cytotoxicity of Ag-UCNPs-SiO2 was tested via the cell counting kit-8 (CCK-8) method, and its imaging ability was characterized using the micro-CT method.

Keywords

up-conversion; nanomaterials; CT imaging

Subject

Chemistry and Materials Science, Biomaterials

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.