Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Magnesium Nanoparticle Synthesis From Powders Via Pulsed Laser Ablation In Liquid For Wearables and Flexible Sensor Technologies

Version 1 : Received: 22 October 2021 / Approved: 25 October 2021 / Online: 25 October 2021 (15:46:16 CEST)

A peer-reviewed article of this Preprint also exists.

Nyabadza, A.; Vázquez, M.; Coyle, S.; Fitzpatrick, B.; Brabazon, D. Magnesium Nanoparticle Synthesis from Powders via Pulsed Laser Ablation in Liquid for Nanocolloid Production. Appl. Sci. 2021, 11, 10974. Nyabadza, A.; Vázquez, M.; Coyle, S.; Fitzpatrick, B.; Brabazon, D. Magnesium Nanoparticle Synthesis from Powders via Pulsed Laser Ablation in Liquid for Nanocolloid Production. Appl. Sci. 2021, 11, 10974.

Abstract

Magnesium nanoparticles of various mean diameters (53 – 239 nm) were synthesized herein via Pulsed Laser Ablation in Liquid (PLAL) from millimeter sized magnesium powders within iso-propyl alcohol. It was observed via a 3x3 full factorial DOE that the processing parameters can control the nanoparticle distribution to produce three size-distribution types (bimodal, skewed and normal). Ablation times of 2, 5, and 25 minutes where investigated. An ablation time of 2 minutes produced a bimodal distribution with the other types seen at higher periods of processing. Mg nanoparticle UV-Vis absorbance at 204 nm increased linearly with increasing ablation time, indicating an increase in nanoparticle count. The colloidal density (mg/ml) generally increased with increasing nanoparticle mean diameter as noted via increasing UV-vis absorbance. High la-ser scan speeds (within the studied range of 3000 - 3500 mm/s) tend to increase the nanoparticle count/yield. For the first time, the effect of scan speed on colloidal density, UV-vis absorbance and nanoparticle diameter from metallic powder ablation was investigated and is reported herein. The nanoparticles formed dendritic structures after being drop cast on aluminum foil as observed via FESEM analysis. Dynamic light scattering was used to measure the size of the nanoparticles. Magnesium nanoparticles have promising use in the fabrication of wearables, such as in conductive tracks or battery electrodes, owing to their low heat capacity, high melting point and bio-compatibility.

Keywords

Magnesium nanoparticles; Laser scan speed, Wearables; Pulsed Laser Ablation in Liquid; Advanced manufacturing; Flexile sensors; Powder metallurgy; Surface science; Nanoparticle size distributions; Picosecond laser

Subject

Chemistry and Materials Science, Nanotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.