Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Multichannel Real-Time Electronics Platform for the Estimation of the Error in Impact Localization With Different Piezoelectric Sensors Density

Version 1 : Received: 21 April 2021 / Approved: 22 April 2021 / Online: 22 April 2021 (09:14:03 CEST)

A peer-reviewed article of this Preprint also exists.

Capineri, L.; Bulletti, A.; Marino Merlo, E. Multichannel Real-Time Electronics Platform for the Estimation of the Error in Impact Localization with Different Piezoelectric Sensor Densities. Appl. Sci. 2021, 11, 4027. Capineri, L.; Bulletti, A.; Marino Merlo, E. Multichannel Real-Time Electronics Platform for the Estimation of the Error in Impact Localization with Different Piezoelectric Sensor Densities. Appl. Sci. 2021, 11, 4027.

Abstract

The work presents a Structural Health Monitoring (SHM) electronic system with real-time ac-quisition and processing for the determination of impact location in laminates. The novelty of this work is the quantitative evaluation of impact location errors using the Lamb wave guided mode S0, captured and processed in real-time by up to eight piezoelectric sensors. The differential time of arrival is used to minimize an error function for the position estimation. The impact energy is correlated to the amplitudes of the antisymmetric (A0 ) mode and the electronic design is de-scribed to avoid saturation for signal acquisition. The same electronic is designed to acquire symmetric (S0 ) low level signals by adequate gain, bandwidth and signal to noise ration. Such signals propagate into a 1.4mm thick aluminum laminate at the group velocity of 5150m/s with frequency frequency components above 270kHz and can be discriminated from the A0 mode to calculate accurately the differential arrival time. The results show that the error is not improved better than S0 wavelength in impact localization by using six out of eight sensors connected to the electronic system.

Keywords

real-time electronics; structural health monitoring; Lamb wave; piezoelectric sensors; impact localization, ultrasonic guided waves

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.