Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Numerical simulation of pulsed gravel packing completion in horizontal wells

Version 1 : Received: 29 November 2020 / Approved: 30 November 2020 / Online: 30 November 2020 (12:03:31 CET)

A peer-reviewed article of this Preprint also exists.

Zhang, Z.; Yang, J.; Chen, S.; Ou, Q.; Zhang, Y.; Qu, X.; Guo, Y. Numerical Simulation of Pulsed Gravel Packing Completion in Horizontal Wells. Energies 2021, 14, 292. Zhang, Z.; Yang, J.; Chen, S.; Ou, Q.; Zhang, Y.; Qu, X.; Guo, Y. Numerical Simulation of Pulsed Gravel Packing Completion in Horizontal Wells. Energies 2021, 14, 292.

Abstract

Gravel packing completion method for horizontal wells has the advantages of maintaining high oil production for a long time, maintaining wellbore stability and preventing sand production, so it has become the preferred completion method for horizontal wells. At present, this technology still faces the problems of high sand bed height and poor gravel migration. In order to improve the efficiency of gravel packing in horizontal wells, pulsed gravel packing technology for horizontal wells is proposed for the first time. Based on the mechanism of hydraulic pulse, the Eularian model, RNG K-ε model and CFD model are used to simulate the solid-liquid two-phase flow. By optimizing the parameters such as frequency and amplitude of pulse waveform, the optimal pulse waveform of pulsed gravel packing in horizontal wells is determined. The effects of parameters such as sand-carrying fluid displacement, sand-carrying fluid viscosity, sand-carrying ratio, gravel particle size and string eccentricity on pulsed gravel packing in horizontal wells are studied, and the distribution law of gravel migration velocity and volume fraction in horizontal wells is obtained. According to the results, it can be seen that with the increase of displacement and viscosity of carrier fluid, the volume fraction of fixed bed and moving bed decreases gradually, while that of suspension bed increases gradually. With the increase of sand-carrying ratio, gravel particle size and string eccentricity, the volume fraction of fixed bed and moving bed increases gradually, while that of suspended bed decreases gradually. Comparing the effects of conventional gravel packing and pulsed gravel packing in horizontal wells, it can be concluded that the efficiency of pulsed gravel packing in horizontal wells is higher. The volume fraction of fixed bed and moving bed decreased by 30% and 40% respectively, while the volume fraction of suspended bed increased by 20%. The migration velocity of moving bed and suspended bed increased by 40% and 25% respectively. And the migration ability of gravel improved obviously.

Keywords

horizontal well; pulsed gravel packing; completion; solid-liquid two-phase flow

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.