Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Displacement Detection Decoupling in Counterpropagating Dual-beams Optical Tweezers with Large-sized Particle

Version 1 : Received: 20 July 2020 / Approved: 21 July 2020 / Online: 21 July 2020 (13:50:53 CEST)

A peer-reviewed article of this Preprint also exists.

Zhu, X.; Li, N.; Yang, J.; Chen, X.; Hu, H. Displacement Detection Decoupling in Counter-Propagating Dual-Beams Optical Tweezers with Large-Sized Particle. Sensors 2020, 20, 4916. Zhu, X.; Li, N.; Yang, J.; Chen, X.; Hu, H. Displacement Detection Decoupling in Counter-Propagating Dual-Beams Optical Tweezers with Large-Sized Particle. Sensors 2020, 20, 4916.

Abstract

Optical tweezers, as a kind of ultra-sensitive acceleration sensing platform, show a minimum measurable value inversely proportional to the square of the diameter of the levitated spherical particle. However, the coupling of the displacement measurement between axes becomes notable, along with the increasing of the diameter. This paper analyzes the source of coupling in a forward scattering far-field detection regime and proposes a novel method of suppression. We theoretically and experimentally demonstrated that when three variable irises added into detection optics, without changing other parts of optical structures, the decoupling of triaxial displacement signals mixed with each other show significant improvement. The detection coupling ratio reduction of 49.1 dB and 22.9dB has been realized in radial and axial direction respectively, which is principally in accord with simulations. This low cost and robust approach makes it possible to accurately measure three-dimensional mechanical quantities simultaneously and even go further such as active cooling the particle to quantum ground state.

Keywords

optical tweezers; optical trap; acceleration; decoupling

Subject

Physical Sciences, Optics and Photonics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.