Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

An Innovative Low-Cost Equipment for Electro-Concentration of Microalgal Biomass

Version 1 : Received: 8 July 2020 / Approved: 9 July 2020 / Online: 9 July 2020 (07:46:18 CEST)

A peer-reviewed article of this Preprint also exists.

Sanchez-Galvis, E.M.; Cardenas-Gutierrez, I.Y.; Contreras-Ropero, J.E.; García-Martínez, J.B.; Barajas-Solano, A.F.; Zuorro, A. An Innovative Low-Cost Equipment for Electro-Concentration of Microalgal Biomass. Appl. Sci. 2020, 10, 4841. Sanchez-Galvis, E.M.; Cardenas-Gutierrez, I.Y.; Contreras-Ropero, J.E.; García-Martínez, J.B.; Barajas-Solano, A.F.; Zuorro, A. An Innovative Low-Cost Equipment for Electro-Concentration of Microalgal Biomass. Appl. Sci. 2020, 10, 4841.

Abstract

Microalgal harvesting is one of the most challenging processes in the development of algal research and development. Several methods, such as centrifugation, flocculation, and filtration, are available at the laboratory scale. However, the requirement of expensive pieces of equipment and the possibility of biomass contamination are recurring gaps that hinder the development of microalgae I+D in different parts of the world. Recently, the electroflotation has been proved as a suitable method for the harvesting of different species of microalgae and cyanobacteria. To this day, there are no companies that sell laboratory-scale electroflotation equipment; this is mainly due to the gap in the knowledge on which factors (time, mixing rate, number of electrodes, and others) will affect the efficiency of concentration without reducing the biomass quality. This paper aims to build an innovative low-cost electroflotation system under 300 USD with cheap and resistant materials. To achieve our goal, we test the interaction of three variables (time, mixing rate, and amount of electrodes) were evaluated. Results showed that an efficiency closer to 100% could be achieved under 20 minutes using >10 electrodes and 150 rpm. We hope this innovative approach can be used by different researchers to improve our knowledge of the concentration and harvesting of algae and cyanobacteria.

Keywords

dewatering; response surface methodology; Arduino; aluminum electrodes; microalgae harvesting

Subject

Engineering, Bioengineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.