Working Paper Article Version 1 This version is not peer-reviewed

Polymer Drag Reduction for Single-Phase Water Flow in and around 180° Bends

Version 1 : Received: 16 May 2020 / Approved: 17 May 2020 / Online: 17 May 2020 (15:50:46 CEST)

How to cite: Ayegba, P.O.; Edomwonyi-Otu, L.C.; Abubakar, A.; Yusuf, N. Polymer Drag Reduction for Single-Phase Water Flow in and around 180° Bends. Preprints 2020, 2020050292 Ayegba, P.O.; Edomwonyi-Otu, L.C.; Abubakar, A.; Yusuf, N. Polymer Drag Reduction for Single-Phase Water Flow in and around 180° Bends. Preprints 2020, 2020050292

Abstract

This paper presents an investigation into the influence of drag-reducing polymer (DRP) on the flow of water inside and around U-bends. The DRPs tested were partially hydrolysed polyacrylamide (HPAM) and two different molecular weight polyethylene oxides (PEO). The Reynolds number and in-situ concentration ranges of water and DRP were and respectively. The test section was made up of clear polyvinyl chloride (CPVC) pipes that contained two U-bends with radii of curvature (R) of 100 and 200 mm as well as straight sections of 19-mm ID. Higher pressure gradient was recorded in the under-developed flow section after the bend. Drag reduction (DR) increased with in-situ concentration of the DRP and the flowrate up to some threshold values. The concentration and flowrate thresholds were about 20 ppm and 1.07 m/s respectively. DR differed among the different sections considered with the highest values recorded for developed flows upstream of the bend and the least values recorded in the bend. DR at station 1 (immediately after the bend) was generally lower than that at station 2 (further downstream). P-K Plots showed that, the DR envelop for developed flow in straight pipes did not apply to the bend and the under-developed flow section. DR increased with polymer molecular weight and ionic strength in straight sections. However, molecular weight (and polymer shearing) had limited effect on DR in the bends. DR characteristics at the bend suggested that there was a different or additional mechanism. The effect of bend curvature ratio on DR was predominant after the U-bend. The larger the ratio of pipe diameter to bend diameter, the lower the DR in the redeveloping sections after the bend. For R = 100 mm, the highest DR recorded for fully developed flows before bend, in the bend, at stations 1 and 2 were 57, 31, 36 and 33% respectively while that for R = 200 mm were 64, 28, 42 and 49% respectively.

Keywords

U-bends; polymer drag reduction; flow redevelopment; bend curvature; PEO; HPAM

Subject

Physical Sciences, Fluids and Plasmas Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.