Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Efficient Photoelectrochemical Water Splitting Reaction Using Electrodeposited Co3Se4 Catalys

Version 1 : Received: 25 October 2018 / Approved: 25 October 2018 / Online: 25 October 2018 (11:59:07 CEST)

A peer-reviewed article of this Preprint also exists.

Sim, Y.; John, J.; Surendran, S.; Moon, B.; Sim, U. Efficient Photoelectrochemical Water Splitting Reaction using Electrodeposited Co3Se4 Catalyst. Appl. Sci. 2019, 9, 16. Sim, Y.; John, J.; Surendran, S.; Moon, B.; Sim, U. Efficient Photoelectrochemical Water Splitting Reaction using Electrodeposited Co3Se4 Catalyst. Appl. Sci. 2019, 9, 16.

Abstract

Photoelectrochemical water splitting is a promising field for sustainable energy production using hydrogen. Development of efficient catalysts is essential for resourceful hydrogen production. The most efficient catalysts reported to date have been extremely precious rare-earth metals. One of the biggest hurdles in this research area is the difficulty of developing highly efficient catalysts comparable to the noble metal catalysts. Here, we report that non-noble metal dichalcogenide (Co3Se4) catalysts made using a facile one-pot electrodeposition method, showed highly efficient photoelectrochemical activity on a Si photocathode. To enhance light collection and enlarge its surface area even further, we implemented surface nano-structuring on the Si surface. The nano-structured Si photoelectrode has an effective area greater than that of planar silicon and a wider absorption spectrum. Consequently, this approach exhibits reduced overvoltage as well as increased photo-catalytic activity. Such results show the importance of controlling the optimized interface between the surface structure of the photoelectrode and the electrodeposited co-catalyst on it to improve catalytic activity. This should enable other electrochemical reactions in a variety of energy conversion systems.

Keywords

photoelectrochemical cell; hydrogen evolution reaction (HER); metal free catalyst; cobalt selenide catalyst

Subject

Chemistry and Materials Science, Electrochemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.