Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Form-Finding Analysis on the Rail Cable Shifting System of the Long Span Suspension Bridges

Version 1 : Received: 26 September 2018 / Approved: 28 September 2018 / Online: 28 September 2018 (15:06:34 CEST)

A peer-reviewed article of this Preprint also exists.

Pan, Q.; Yan, D.; Yi, Z. Form-Finding Analysis of the Rail Cable Shifting System of Long-Span Suspension Bridges. Appl. Sci. 2018, 8, 2033. Pan, Q.; Yan, D.; Yi, Z. Form-Finding Analysis of the Rail Cable Shifting System of Long-Span Suspension Bridges. Appl. Sci. 2018, 8, 2033.

Abstract

The determination of the non-loading condition of the rail cable shifting (RCS) system, which consists of main cables, hangers and rail cables, is the premise of the girder erection for the long-span suspension bridges. An analytical form-finding analysis model of shifting system is established according to the basic assumptions of flexible cable structures. Herein, the rail cable is discretized into segmental linear cable elements and the main cable is discretized into segmental catenary elements. Moreover, the calculation and analysis equation of each member and their iterative solutions are derived by taking the elastic elongation of the sling into account. In addition, by taking the girder construction of Aizhai suspension bridge as engineering background, a global scale model of the RCS system is designed and manufactured; also the test system and working conditions are established. The comparison between the test results and analytical results shows the presented analytical method is correct and effective. The process is simplified in the analytical method, and the computational results and precision can satisfy the practical engineering requirements. In addition, the proposed method is suitable to apply to the computation analysis of similar structures.

Keywords

Suspension bridge; Girder construction; RCS process; Form-finding analysis; Model test

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.