Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Power Balancing Control for Grid Energy Storage System in PV Applications—Real Time Digital Simulation Implementation

Version 1 : Received: 19 May 2017 / Approved: 22 May 2017 / Online: 22 May 2017 (07:43:32 CEST)

A peer-reviewed article of this Preprint also exists.

Vavilapalli, S.; Padmanaban, S.; Subramaniam, U.; Mihet-Popa, L. Power Balancing Control for Grid Energy Storage System in Photovoltaic Applications—Real Time Digital Simulation Implementation. Energies 2017, 10, 928. Vavilapalli, S.; Padmanaban, S.; Subramaniam, U.; Mihet-Popa, L. Power Balancing Control for Grid Energy Storage System in Photovoltaic Applications—Real Time Digital Simulation Implementation. Energies 2017, 10, 928.

Abstract

Grid energy storage system for PV Applications is connected with three different power sources i.e. PV Array, Battery and the Grid. It is advisable to have Isolation between these three different sources to provide safety for the equipment. The configuration proposed in this paper provides the complete isolation between the three sources. A Power Balancing Control (PBC) for this configuration is proposed to operate the system in three different modes of operation. Control of a dual active bridge (DAB) based battery charger which provides a galvanic isolation between batteries and other sources is explained briefly. Various modes of operation of a Grid energy storage system are also presented in this paper. Hardware-In-Loop (HIL) Simulation is carried out to check the performance of the system and the PBC algorithm. Power circuit (comprises of inverter, dual active bridge based battery charger, grid, PV cell, batteries, contactors and switches) is simulated and the controller hardware and user interface panel are connected as HIL with the simulated power circuit through Real Time Digital Simulator (RTDS). HIL simulation results are presented to explain the control operation, steady state performance in different modes of operation and the dynamic response of the system.

Keywords

active power control; battery charging; dual active bridge; energy storage system; hardware-in-loop

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.