Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Optimal Design of an Interior Permanent Magnet Synchronous Motor with Cobalt Iron Core

Version 1 : Received: 22 March 2022 / Approved: 24 March 2022 / Online: 24 March 2022 (02:59:21 CET)

A peer-reviewed article of this Preprint also exists.

Bhagubai, P.P.C.; Bucho, L.F.D.; Fernandes, J.F.P.; Costa Branco, P.J. Optimal Design of an Interior Permanent Magnet Synchronous Motor with Cobalt Iron Core. Energies 2022, 15, 2882. Bhagubai, P.P.C.; Bucho, L.F.D.; Fernandes, J.F.P.; Costa Branco, P.J. Optimal Design of an Interior Permanent Magnet Synchronous Motor with Cobalt Iron Core. Energies 2022, 15, 2882.

Abstract

The use of cobalt-iron (VaCoFe) core is investigated as an alternative to silicon-iron (FeSi) on the design of interior permanent magnet synchronous motors (IPMSM). A spoke-type IPMSM geometry is optimized considering FeSi and VaCoFe cores for a torque range up to 40 N.m, providing a general comparative analysis between materials, considering the application of a 4-motor competition vehicle’s powertrain. A genetic optimization algorithm is applied over a hybrid analytical/finite-element model of the motor to provide sufficiently accurate electromagnetic and thermal results within a feasible time. VaCoFe can result in an estimated increase of up to 5 % in efficiency for the same torque, or up to 64 % torque increase for the same efficiency level. After optimization, and using a detailed time-dependent model, a potential 3.2 % increase in efficiency, a core weight reduction of 4.1 %, and a decrease of 9.6 % in the motor’s core volume was found for the VaCoFe at 20 Nm. In addition, for the same motor volume, the VaCoFe allows an increase of 51.9 % of torque with an increase of 1.1 % of efficiency, when compared with FeSi.

Keywords

electric vehicle; electromagnetic model; optimization; silicon-iron; thermal model; Vanadium Cobalt

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.