Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Rapid Prototyping of Virtual Reality Cognitive Exercises in a Tele–Rehabilitation Context

Version 1 : Received: 12 December 2020 / Approved: 14 December 2020 / Online: 14 December 2020 (13:03:01 CET)

A peer-reviewed article of this Preprint also exists.

Perri, D.; Fortunelli, M.; Simonetti, M.; Magni, R.; Carloni, J.; Gervasi, O. Rapid Prototyping of Virtual Reality Cognitive Exercises in a Tele–Rehabilitation Context. Electronics 2021, 10, 457. Perri, D.; Fortunelli, M.; Simonetti, M.; Magni, R.; Carloni, J.; Gervasi, O. Rapid Prototyping of Virtual Reality Cognitive Exercises in a Tele–Rehabilitation Context. Electronics 2021, 10, 457.

Abstract

In recent years, the need to contain healthcare costs due to the growing public debt of many countries, combined with the need to reduce costly travel by patients unable to move autonomously, have captured the attention of public administrators towards tele-rehabilitation. This trend has been consolidated overwhelmingly following the Covid-19 pandemic, which has made it precarious, difficult and even dangerous for patients to access hospital facilities. We present a platform devoted to the rapid prototyping of Virtual Reality based, cognitive tele-rehabilitation exercises. Patients who experienced injury or pathology need to practice a continuous training in order to recover functional abilities, and the therapist need to monitor the outcomes of such practices. The Virtual Reality exercises are designed on Unity 3D to empower the therapist to set up personalised exercises in a easy way, enabling the patient to receive personalized stimuli, which are crucial for a positive outcome of the practice. Furthermore, the reaction speed of the system is of fundamental importance, as the temporal evolution of the scene must proceed parallel to the patient’s movements, to ensure an effective and efficient therapeutic response. So, we optimized the Virtual Reality application in order to make the loading phase and the startup phase as fast as possible and we have tested the results obtained with many devices: in particular computers and smartphones with different operating systems and hardware. The implemented platform integrates in Nu!Reha system®, a tele-rehabilitation set of services that helps patients to recover cognitive and functional capabilities.

Keywords

Blender; Cognitive exercises; Nu!Reha; Tele–Rehabilitation; Unity3D; Virtual Reality

Subject

Computer Science and Mathematics, Computer Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.