Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Influence of Deformation under Tension on Some Mechanical and Tribological Properties of High-Density Polyethylene

Version 1 : Received: 7 August 2019 / Approved: 8 August 2019 / Online: 8 August 2019 (17:54:11 CEST)

A peer-reviewed article of this Preprint also exists.

Kujawa, M.; Kowalewski, P.; Wieleba, W. The Influence of Deformation under Tension on Some Mechanical and Tribological Properties of High-Density Polyethylene. Polymers 2019, 11, 1429. Kujawa, M.; Kowalewski, P.; Wieleba, W. The Influence of Deformation under Tension on Some Mechanical and Tribological Properties of High-Density Polyethylene. Polymers 2019, 11, 1429.

Abstract

Polymer materials are increasingly being used for sliding machine elements due to their numerous advantages. They are used even where they are deformed and in such a state they interact frictionally e.g. in machine hydraulics or lip seals. Few publications deal with the influence of deformation, which is the effect of e.g. assembly on tribological properties of polymeric material. This deformation can reach up to ε ≈ 20% and is achieved without increasing the temperature of the polymer material. The paper presents the results of investigations in which high-density polyethylene (PE-HD) was maintained in deformation by means of a special grip (holder). The wear of the sample was significantly higher than that of the undeformed sample. This effect persisted even after partial relaxation of the stress in the sample after 24 hours. Additional investigations were carried out to explain the obtained results. There were the microscopic observations of the surface after friction, measurements of microhardness and free surface energy. Changes in the value of surface free energy and a significant decrease in microhardness with deformation under tension were observed. Strained material had a different surface appearance after friction and a different size and form of wear products. It was indicated that it is probable that the cohesion of the material will decrease and that the character of the wear process will change as a result of tension. Tension without heating of polymeric material (PE-HD), e.g. as a result of assembly, has been qualified as a hazard to be taken into account when designing and analysing polymeric sliding elements.

Keywords

polyethylene; friction; wear; hardness; surface free energy; stress; strain

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.