Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Responses of Soil Microbial Communities to Robinia Pseudoacacia Plantations of Different Ages in A Loess Area

Version 1 : Received: 5 September 2017 / Approved: 5 September 2017 / Online: 5 September 2017 (15:28:05 CEST)

How to cite: Zhang, B.; Zhao, R.; Bi, B.; Han, F. Responses of Soil Microbial Communities to Robinia Pseudoacacia Plantations of Different Ages in A Loess Area. Preprints 2017, 2017090016. https://doi.org/10.20944/preprints201709.0016.v1 Zhang, B.; Zhao, R.; Bi, B.; Han, F. Responses of Soil Microbial Communities to Robinia Pseudoacacia Plantations of Different Ages in A Loess Area. Preprints 2017, 2017090016. https://doi.org/10.20944/preprints201709.0016.v1

Abstract

Phospholipid fatty acids (PLFAs) can be used as biomarkers for qualitative and quantitative analyses of soil microbial community diversity. In this study, we collected soil samples at 10-cm intervals to a depth of 1 m from Robinia pseudoacacia plantations of four different ages (10, 15, 25 and 40 years) in a loess area and analysed the soil microbial community structure by PLFA analysis. A total of 97 PLFAs were detected in soils of R. pseudoacacia plantations of different ages. The individual PLFA contents gradually decreased in the 0- to 40-cm soil layers, with little variation in the 40- to 100-cm soil layers. The individual PLFAs were similarly distributed in the soils of R. pseudoacacia plantations of different ages, and there was a clear variation with stand age and soil depth. The individual PLFA contents in the 0- to 20-cm soil layers were highest for the 25-year-old plantation, while those in the 20- to 40-cm soil layers were relatively high for the 25- and 40-year-old plantations; the 16:0 content was the highest among individual PLFAs. The total PLFA content and the PLFA contents of different microbial groups [bacteria, fungi, Gram-positive bacteria (G+), Gram-negative bacteria (G-) and actinomycetes] initially increased before decreasing in the soils of R. pseudoacacia plantations with increasing stand age, whereas these contents gradually decreased with increasing soil depth; the highest PLFA contents was found in the 25-year-old plantation. The total PLFA content and the contents of fungal, G- and actinomycete PLFAs in the soils of R. pseudoacacia plantations differed significantly among stands of different ages in the 0- to 10-cm, 10- to 20-cm and 30- to 40-cm soil layers, while no significant differences were found in the 20- to 30-cm soil layers; the G+ and bacterial PLFAs contents in each of the 0- to 40-cm soil layers were significantly different. The PLFA ratios between different microbial groups differed among the stands of different ages. The fungi/bacteria ratio showed a “decrease-increase-decrease” trend with stand age, while the G+/G- ratio showed an “increase-decrease” trend. The saturated/monounsaturated PLFA ratio initially decreased before plateauing, while the opposite trend was observed for the cyclopropyl/precursor ratio. The PLFA contents of different microbial groups were ranked as follows: bacteria > G- > G+ > actinomycetes > fungi. In the principle component analysis, 18:1ω9c, 10Me18:0, i17:0, a17:0, 18:1ω7c, 18:1ω5c and 18:0 made the greatest contribution to principal component 1, and a14:0, i14:0 3OH, i14:0, i14:1ω7c and 14:0 made the greatest contribution to principal component 2. In conclusion, soil nutrient status and other soil eco-environmental stress factors should be considered in 10- to 25-year-old (particularly ~15-year-old) plots for the management of R. pseudoacacia plantations to prevent forest soil degradation and improve forest stand quality, thereby achieving better soil and water conservation and environmental improvement in R. pseudoacacia plantations.

Keywords

soil; Robinia pseudoacacia; PLFA; stand age; microbial community

Subject

Biology and Life Sciences, Forestry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.