Preprint Article Version 1 NOT YET PEER-REVIEWED

Use of Micropatterned Thin Film Nitinol in Carotid Stents to Augment Embolic Protection

  1. Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
  2. Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15237, USA
  3. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
  4. McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
Version 1 : Received: 31 October 2016 / Approved: 1 November 2016 / Online: 1 November 2016 (06:54:40 CET)

How to cite: Shayan, M.; Jankowitz, B.; Shridhar, P.; Chun, Y. Use of Micropatterned Thin Film Nitinol in Carotid Stents to Augment Embolic Protection. Preprints 2016, 2016110004 (doi: 10.20944/preprints201611.0004.v1). Shayan, M.; Jankowitz, B.; Shridhar, P.; Chun, Y. Use of Micropatterned Thin Film Nitinol in Carotid Stents to Augment Embolic Protection. Preprints 2016, 2016110004 (doi: 10.20944/preprints201611.0004.v1).

Abstract

Stenting is an alternative to endarterectomy for the treatment of carotid artery stenosis. However, stenting is associated with a higher risk of procedural stroke secondary to distal thromboembolism. Hybrid stents with a micromesh layer have been proposed to address this complication. We developed a micropatterned thin film nitinol (M-TFN) covered stent designed to prevent thromboembolism during carotid intervention. This innovation may obviate the need or work synergistically with embolic protection devices. The proposed double layered stent is low-profile, thromboresistant, and covered with a M-TFN that can be fabricated with fenestrations of varying geometries and sizes. The M-TFN was created in multiple geometries, dimensions, and porosities by sputter deposition. The efficiency of various M-TFN to capture embolic particles was evaluated in different atherosclerotic carotid stenotic conditions through in vitro tests. The covered stent prevented emboli dislodgement in the range of 70-96% during 30min duration tests. In vitro vascular cell growth study results showed that endothelial cell elongation, alignment and growth behaviour silhouettes significantly enhance specifically on the diamond-shape M-TFN with the dimensions of 145µm×20µm and a porosity of 32%. Future studies will require in-vivo testing. Our results demonstrate that M-TFN has a promising potential for carotid artery stenting.

Subject Areas

thin film nitinol; carotid artery; micro mesh stent; micropatterning

Readers' Comments and Ratings (0)

Discuss and rate this article
Views 87
Downloads 111
Comments 0
Metrics 0
Discuss and rate this article

×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.