Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Electrochemical Behavior and Determination of Chlorogenic Acid Based on Carbon Nanotubes Modified Screen-Printed Electrode

Version 1 : Received: 8 August 2016 / Approved: 8 August 2016 / Online: 8 August 2016 (12:07:57 CEST)

A peer-reviewed article of this Preprint also exists.

Ma, X.; Yang, H.; Xiong, H.; Li, X.; Gao, J.; Gao, Y. Electrochemical Behavior and Determination of Chlorogenic Acid Based on Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrode. Sensors 2016, 16, 1797. Ma, X.; Yang, H.; Xiong, H.; Li, X.; Gao, J.; Gao, Y. Electrochemical Behavior and Determination of Chlorogenic Acid Based on Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrode. Sensors 2016, 16, 1797.

Abstract

In this paper, carbon nanotubes modified screen-printed electrode (CNTs/SPE) was prepared and the CNTs/SPE was employed for the electrochemical determination of antioxidant substance Chlorogenic acids (CGAs). A pair of well-defined redox peak of CGA was observed at the CNTs/SPE in 0.10 mol∙L-1 acetic acid-sodium acetate buffer (pH 6.2) and electrode process is adsorption-controlled. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) method for the determination of CGA were proposed based on the CNTs/SPE. Under the optimal conditions, the proposed method exhibited linear ranges from 4.73×10-7 to 4.45×10-5 mol∙L-1, the linear regression equation was Ipa(µA) = 4.1993 C (mol∙L-1)+1.1039 (r = 0.9976) and the detection limit for CGA could reach 3.25×10-6 mol∙L-1. The recovery of matrine was 94.74~106.65% (RSD = 2.92%) in coffe beans. The proposed method is quick, sensitive, reliable, and can be used for the determination of CGA.

Keywords

Chlorogenic acid; screen-printed electrode; carbon nanotubes

Subject

Chemistry and Materials Science, Analytical Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.