Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control

Version 1 : Received: 3 August 2016 / Approved: 4 August 2016 / Online: 4 August 2016 (06:20:33 CEST)

A peer-reviewed article of this Preprint also exists.

Aggogeri, F.; Borboni, A.; Merlo, A.; Pellegrini, N.; Ricatto , R. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control. Sensors 2016, 16, 1577. Aggogeri, F.; Borboni, A.; Merlo, A.; Pellegrini, N.; Ricatto , R. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control. Sensors 2016, 16, 1577.

Abstract

This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that compromise seriously the quality of the workpiece. The active vibration control (AVC) device is composed by a host part integrated with sensors and actuators synchronized by a regulator, able to make a self-assessment and adjust to the environmental alteration. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving machine tool, PZT actuator and controller models. The Hardware-in-the-loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

Keywords

real-time control; mechatronics; PZT actuators; vibration; hardware-in-the-loop

Subject

Engineering, Industrial and Manufacturing Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.