Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Thermal analysis of a fast charging technique for a high power lithium ion cell

Version 1 : Received: 27 July 2016 / Approved: 27 July 2016 / Online: 27 July 2016 (16:30:36 CEST)

A peer-reviewed article of this Preprint also exists.

García Fernández, V.M.; Blanco Viejo, C.; Anseán González, D.; González Vega, M.; Fernández Pulido, Y.; Alvarez Antón, J.C. Thermal Analysis of a Fast Charging Technique for a High Power Lithium-Ion Cell. Batteries 2016, 2, 32. García Fernández, V.M.; Blanco Viejo, C.; Anseán González, D.; González Vega, M.; Fernández Pulido, Y.; Alvarez Antón, J.C. Thermal Analysis of a Fast Charging Technique for a High Power Lithium-Ion Cell. Batteries 2016, 2, 32.

Abstract

The cell case temperature versus time profiles of a multistage fast charging technique (4C-1C-CV)/fast discharge (4C) in a 2.3 Ah cylindrical lithium-ion cell are analyzed using a 1D thermal model. Heat generation is dominated by the irreversible component associated to cell overpotential, although evidences of the reversible component are also observed, associated to the heat related to entropy from the electrode reactions. The final charging stages (i.e., 1C-CV) significantly reduce heat generation and cell temperature during charge, resulting in a thermally safe charging protocol. Cell heat capacity was determined from cell specific heats and cell materials thickness. The 1D model adjustment of the experimental data during the 2 min. resting period between discharge and charge allowed us to calculate both the time constant of the relaxation process and the cell thermal resistance. The obtained values of these thermal parameters used in the proposed model are almost equal to those found in the literature for the same cell model, which suggests that the proposed model is suitable for its implementation in thermal management systems.

Keywords

thermal model ; fast charge ; lithium-ion cell

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.