In the present work freezing and melting characteristics of water seeded with chemically functionalized graphene nano-platelets in a vertical cylindrical capsule was experimentally studied. The volume percentage of functionalized graphene nano-platelets was varied from 0.1% to 0.5% with an interval of 0.1%. The stability of the synthesised samples were carried out by zeta potential distribution. The thermal conductivity of the nanocomposite samples were experimentally measured using transient hot wire method. A maximum enhancement of ~24% in the thermal conductivity was observed for the 0.5% volume percentage in the liquid state while a ~53% enhancement in the solid state. Freezing and melting behaviour of water dispersed with graphene nanoplatelets were carried out using a cylindrical stainless steel capsule in a constant temperature bath. The bath temperatures considered for studying freezing characteristics were considered to be −6 °C and −10 °C, while to study the melting characteristics the bath temperature was set as 31 °C and 36 °C. The freezing and melting time decreased for all the test conditions when the volume percentage of GnP increased. The freezing rate was enhanced by ~ 43% and ~32% for the bath temperatures of −6 °C and −10 °C respectively at 0.5 vol % of graphene loading. The melting rate was enhanced by ~42% and ~63% for the bath temperature of 31 °C and 36 °C respectively at 0.5 vol % of graphene loading.