Contamination with Arsenic, a toxic metalloid, is increasing in the marine environment. Additionally, global warming can alter metalloids toxicity. Polychaetes are key species in marine environments. By mobilizing sediments, they play vital roles in nutrient and element (including contaminants) cycles. Most studies with marine invertebrates focused on the effects of metalloids on either adults or larvae. Here we bring information on the effects of temperature increase and arsenic contamination on the polychaete Hediste diversicolor in different growth stages and water temperatures. Feeding activity and biochemical responses – neurotransmission, indicators of cell damage, antioxidant and biotransformation enzymes and metabolic capacity - were evaluated. Temperature rise combined with As imposed alterations on feeding activity and biochemical endpoints at different growth stages. Small organisms have their antioxidant enzymes increased, avoiding lipid damage. However, larger organisms are the most affected class due to inhibition of superoxide dismutase, which resulted in protein damage. Oxidative damage was observed on smaller and larger organisms exposed to As and 21 °C, demonstrating higher sensibility to the combination of temperature rise and As. The observed alterations may have ecological consequences, affecting the cycle of nutrients, sediment oxygenation and the food chain that depend on the bioturbation of this polychaete.