Propagation of human cytomegalovirus (CMV) in cultured cells results in genetic adaptations that confer improved growth in vitro and significant attenuation in vivo. Mutations in RL13 arise quickly during cell culture passage, while mutations in the UL128-131A locus emerge later during fibroblast passage and disrupt expression of a glycoprotein complex that is important for entry into epithelial and endothelial cells. As in vivo CMV replicates in the context of host antibodies, we reasoned that antibodies might mitigate the accumulation of adaptive mutations during cell culture passage. To test this, CMV in infant urine was used to infect replicate fibroblast cultures. One lineage was passaged in the absence of CMV-hyperimmuneglobulin (HIG) while the other was passaged with HIG in the culture medium. The former lost epithelial tropism and aquired mutations disrupting RL13 and UL131A expression, whereas the latter retained epithelial tropism and both gene loci remained intact after 22 passages. An epitheliotropic RL13+/ UL131A+ virus was isolated by limiting-dilution in the presence of HIG and expanded to produce a working stock sufficient to conduct cell tropism experiments. Thus, culture in the presence of antibodies may facilitate in vitro experiments using viruses that are genetically more authentic than has been previously possible.