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Abstract

Artificial intelligence (Al) is increasingly integrated into scientific discovery processes, such as protein
design, gene analysis, and materials research, significantly enhancing the efficiency of discoveries
in these fields. While much recent literature emphasizes fully automated pipelines, it is crucial to
acknowledge that scientific discovery is inherently a creative and high-stakes endeavor. Therefore, it
relies heavily on human expertise for judgment and guidance, especially in the face of uncertainty.
Despite rapid growth in human-in-the-loop and collaborative systems, the field lacks a unifying survey
that explains how humans and Al actually collaborate across the scientific discovery life-cycle. In
this paper, we present a systematic review of human-AI (HAI) collaboration for scientific discovery.
Specifically, we have identified four representative roles of humans and Al Using this lens, we then
distill common HAI collaboration patterns across three distinct stages in the scientific discovery process
(i.e., observation, hypothesis, and experiment). Finally, we identify key gaps in existing approaches
and outline future research directions for developing trustworthy, role-aware human—AlI systems in
scientific discovery.

Keywords: Human-AI Collaboration

1. Introduction

The integration of artificial intelligence (Al) into scientific research has progressed from a method-
ological enhancement to a fundamental paradigm shift (Tang et al. 2025; Zhang et al. 2024b). Early
Al models primarily functioned as computational tools, facilitating low-level analytical tasks, such
as pattern extraction and representation learning (Ye et al. 2025a; Zhang et al. 2024a). More recently,
advances in Al, particularly large language models (LLMs), have introduced stronger capabilities for
reasoning (Ma et al. 2024; Yao et al. 2023), exerting a transformative effect on the scientific discovery
process. For example, some Al systems even demonstrate the ability to plan and execute experiments
autonomously (Jansen et al. 2025; Pratiush et al. 2024; Zheng et al. 2025).

Despite the rapid development of Al, scientific discovery remains a fundamentally creative
and complex process that requires significant human involvement. Especially in high-stakes and
resource-intensive scientific domains (e.g., medicine, chemistry, and genomics) where errors can be
costly or irreversible, human scientists are still expected to continuously monitor Al outcomes and
make critical research decisions. However, existing surveys predominantly focus on the technical
capabilities of AI models, often overlooking the role of human scientists in the discovery process.
For instance, Zheng et al. (2025) reviews LLM-based systems for scientific discovery and proposes
a three-level autonomy taxonomy (i.e., Tool, Analyst, Scientist). Reddy and Shojaee (2025) provides
a survey of generative Al for scientific tasks and summarizes challenges in building Al systems for
scientific discovery. Consequently, our theoretical understanding of how humans and Al can effectively
collaborate together throughout the scientific research process remains limited. Although surveys
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on human-NLP cooperation (Huang et al. 2025) and general human-Al interaction discuss relevant
interaction principles (Mohanty et al. 2025; Rajashekar et al. 2024), they often overlook the specific
context of scientific discovery. Therefore, there is a lack of a structured framework for understanding
the human-AlI partnership in scientific discovery.
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Figure 1. Our taxonomy characterizes research on human-AlI collaborative scientific discovery from four roles of
human and Al across the three stages of scientific discovery.

To bridge this gap, we presented a systematic taxonomy for human-AlI collaboration in scientific
discovery. First, we identified four roles of human and Al based on a systematic review of 51 papers
and anchored our analysis in the established three stages of scientific discovery (Wang et al. 2023a)
(i.e., observation, hypothesis, and experiment). This established a unified framework that organized
collaborative dynamics into consistent and comparable units. Building upon this taxonomic framework,
we analyzed the specific role allocation between human and Al partners, identifying and discussing
their common collaboration patterns in scientific discovery and their differences across the three stages.
We conclude by outlining five open challenges and future directions for establishing efficient and
trustworthy human-Al partnerships. The main contributions of this paper are summarized as follows:

*  We presented a comprehensive survey that systematically reviews human-AI collaboration specif-
ically in scientific discovery.

¢  Weintroduced a novel taxonomy that defines the four roles of human and Al and characterized
their distinct collaboration patterns across the three stages of scientific discovery.

*  Weidentified critical challenges and future pathways for building human-AlI partnerships in the
scientific discovery process.

2. Methodology

In this section, we outline the methodology for collecting a corpus of 51 papers on human-Al
collaboration for scientific discovery and the coding process used to identify the roles of human and Al

2.1. Paper Collection

To assemble a high-quality corpus focused on human-AlI collaboration for scientific discovery,
we implemented a systematic selection process encompassing research published between 2015 and
2025. We began by identifying seed papers from authoritative surveys on Al for science (Reddy and
Shojaee 2025; Zheng et al. 2025). Using these papers as a baseline, we then conducted an iterative
snowballing procedure, examining references and citations to identify relevant work until no further
relevant studies emerged.

To ensure relevance, we applied several screening criteria to select papers for inclusion in our
corpus. We began by reviewing the abstracts, and if necessary, examined other sections. Each paper
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had to present an interactive system or workflow explicitly designed to facilitate scientific discovery. As
a result, we excluded papers whose contribution was the development of a fully automated algorithm.
Additionally, we excluded studies focused solely on data labeling tasks (e.g., SciDaSynth (Wang et al.
2025d)), even if the paper suggested that the dataset could contribute to future scientific discovery, as
these works were considered too preliminary. To maintain high quality, we included only published
papers or preprints with more than 100 citations. The final corpus consisted of 51 papers from a variety
of reputable venues, such as Nature, ACL, EMNLP, CHI, and TVCG.

2.2. Paper Coding

Initially, six co-authors independently coded a subset of the corpus to derive the roles of hu-
mans and Al Through weekly discussions, they resolved conflicts and unified the coding results,
ultimately identifying four distinct roles. To better analyze their functions in scientific discovery,
we followed a commonly used three-stage decomposition of the scientific process (i.e., observation,
hypothesis, experiment) (Wang et al. 2023a), coding each paper according to which stage it belonged
to. Specifically, the observation stage involves collecting and examining data or phenomena to identify
patterns, anomalies, or open questions that require explanation. Based on these observations and prior
knowledge, researchers formulate hypotheses—tentative, testable explanations or predictions that
guide inquiry. The experiment stage then designs and conducts controlled studies or analyses to test
these hypotheses, using the results to validate, refine, or reject them, often leading to new observations
and continuing the discovery cycle.

3. Taxonomy

In this section, we first introduce four roles that humans or Al can play in the scientific discovery
process. Built upon the definitions of these roles, we then elaborate on common human-AlI collabora-
tion patterns at the three stages of scientific discovery. Finally, we analyze how these roles differ across
the three distinct stages.

3.1. Roles of Human and Al

Based on our systematic analysis of the corpus, we identify four roles of human and Al in scientific
discovery: Informer, Explorer, Evaluator, and Controller. To clarify agency, we apply “human-" or
“Al-" prefixes before these roles (e.g., human-Informer, Al-Informer).
<& Informer. The Informer synthesizes, distills, or articulates key information, insights, or constraints
from raw data or intermediate analyses to guide the actions of other roles. For instance, the Al-
Informer in THALIS extracts temporal patterns from longitudinal symptom records in cancer therapy
(Floricel et al. 2022). This provides a summarized trajectory view for experts to analyze patient
responses to treatment. Similarly, in ISHMAP for Mars rover operations (Wright et al. 2023), the
human-Informer marks instrument states and operational events on the telemetry timeline. The Al
uses these annotations to reduce false alarms during state changes and to highlight unexpected signals.
<& Explorer. The Explorer operates within the space of data patterns, hypotheses, or experimental
designs to explore promising candidates or directions. Compared with Informer, whose output
provides low-level data insights, the Explorer directly generates candidates tailored to the specific
needs of each stage in the scientific discovery process. For instance, in the hAE interface (Pratiush
et al. 2024), the Al-Explorer searches the parameter space to select the next experimental conditions
for electron microscopy. ChemVA (Sabando et al. 2021) enables the human-Explorer to interactively
navigate a projected chemical space to identify molecular targets.
<& Evaluator. Once artifacts are proposed, their scientific merit must be rigorously evaluated and
even refined. The Evaluator assesses observed patterns, hypotheses, or experimental designs based
on predefined criteria, evidence, and domain constraints, revising them as necessary to meet quality
standards. For instance, in RetroLens (Shi et al. 2023a), chemists serve as the human-Evaluator.
Specifically, they can assess Al-predicted synthetic routes for chemical feasibility or refine the synthetic
steps by themselves.
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<& Controller. The Controller oversees the scientific discovery workflow to ensure correct and
constraint-compliant execution, intervening when necessary to adjust procedures and handle runtime
exceptions. This role is central to BIA (Xin et al. 2024), where the AI-Controller orchestrates the execu-
tion of complex bioinformatics toolchains, dynamically handling errors and modifying the workflow
logic to ensure successful completion.

3.2. Common Collaboration Patterns Within Each Stage of Scientific Discovery

In this section, we introduce common human-AlI collaboration patterns at each of the three stages
(i.e., observation, hypothesis, and experiment) of the scientific discovery process. Note that although
many papers in our corpus involve multiple human or Al roles, we only focus on roles that actively
participate in human-AlI collaboration and derive collaboration patterns from them to ensure that our
analysis reflects meaningful human-—AlI collaboration rather than mere role co-existence

3.2.1. Observation Stage

The observation stage involves collecting and analyzing data to identify patterns and anomalies
that warrant further investigation. During this stage, humans and Al collaborate to organize large
datasets, highlight potential patterns, and verify them against the raw data to support hypothesis
generation.

Al-Informer & Human-Explorer . A common human-Al collaboration pattern in the observation
stage involves an Al-Informer transforming raw data into structured representations (e.g., embeddings
or feature importance maps), supporting a human-Explorer to efficiently identify clusters, trends,
and outliers in scientific data. For example, some Al-Informers map high-dimensional data into a
two-dimensional view, allowing human-Explorers to observe how patterns change across different
conditions (Jeong et al. 2025; Kawakami et al. 2025). In biological domains, Al-Informers visualize
tissue interactions (Morth et al. 2025), pediatric health profiles (Jiang et al. 2024), neural connections
(Yao et al. 2025), and cell trajectories (Wang et al. 2025b). Human-Explorers follow these visual path-
ways to uncover disease trends or developmental stages. Other tools organize items by similarity. The
Al-Informers can also cluster compounds or highlight sequence motifs, allowing human-Explorers
to search for promising chemicals (Sabando et al. 2021), biomarkers (Sheng et al. 2025b), or pro-
tein functions (Park et al. 2024). Furthermore, the Al-Informers can rank the influence of features
on predictions. The Human-Explorers investigate these cues to understand air pollution drivers
(Palaniyappan Velumani et al. 2022), explore raw fiber tracts (Xu et al. 2023), and analyze phenotype
images (Krueger et al. 2020).

Al-Explorer & Human-Evaluator . When models can automatically suggest candidates, the col-
laboration often follows an examination by humans. The Al-Explorer suggests candidate patterns
and displays the primary evidence it used, such as highlighted inputs, matched records, or similar
past cases. The human-Evaluator reviews these candidates to determine whether they are correct and
meaningful. For instance, in drug research, the AI-Explorer highlights connections among different
drugs for repurposing, enabling the human Evaluator to assess and verify the underlying biological
rationale (Wang et al. 2023b). In structural biology, the Al-Explorer can generate 3D atomic models to
match density maps, allowing the human-Evaluator to examine the structural configuration (Luo et al.
2025). For longitudinal records in medicine, the AI-Explorers find distinct treatment pathways or care
rules. The human-evaluators review these specific sequences to validate symptom progression (Floricel
et al. 2022) or hospital protocols (Floricel et al. 2024). In plant embryo lineage analysis, the AI-Explorer
can generate classification results from multiple models. The human-Evaluator then assesses these
outputs to identify the correct cell type based on consensus (Hong et al. 2024). Additionally, the
Al-Explorer can retrieve and explore the functional roles of gene groups, while the human Evaluator
reviews this information to validate their biological relevance (Wang et al. 2025e).

Al-Explorer & Human-Controller . With autonomous tools, observation follows an iterative search
loop. The human-Controller directs the search process, while the AI-Explorer scans the data. For
literature discovery, the human-Controllers guide the search direction, while the AI-Explorers navigate
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databases to summarize relevant papers (Qiu et al. 2025; Xin et al. 2024). To identify star clusters
or spatial groups, the human-Controller adjust the detection parameters. The Al-Explorer scans
astronomical surveys to locate new star clusters (Ratzenbock et al. 2023) or analyzes spatial population
data to find notable spatial groups (Wentzel et al. 2023). In causal analysis, the human-Controller
refines the search constraints, enabling the Al-Explorer to explore cause-and-effect relationships (Fan
et al. 2025). Additionally, for Mars rover operations, the human-Controller sets anomaly criteria to
enable the Al-Explorer to detect signal anomalies (Wright et al. 2023).

3.2.2. Hypothesis Stage

Hypothesis generation involves proposing explanations or solutions for observed phenomena.
Collaborative efforts during this phase focus on retrieving background knowledge and developing
candidate theories or designs to guide subsequent testing.

Al-Explorer & Human-Evaluator. A common collaboration pattern involves the Al-Explorer
generating the initial hypothesis draft, while the human-Evaluator performs the final scientific review.
For instance, AI-Explorers generate candidate drug structures or material compositions, while human-
Evaluators assess whether these designs are chemically feasible (Liu et al. 2024; Lu et al. 2018; Ni
et al. 2024). Similarly, AI-Explorers scan vast chemical or protein spaces to find promising candidates.
Human-Evaluators review the list to select the best options for testing (Kale et al. 2023; Swanson et al.
2025). In scientific idea generation, Al-Explorers combine concepts from the literature to propose new
research directions or claims. Human-Evaluators validate these proposals against domain knowledge
(Kakar et al. 2019; Ortega and Gomez-Perez 2025; Wang et al. 2025a).

Al-Explorer & Human-Controller . In interactive design tasks, the human-Controller guides the
optimization process, while the Al-Explorer generates candidate solutions. For example, in material
and drug design, the human-Controller directs the design process by updating the requirements. The
Al-Explorer then generates a new batch of molecules based on this guidance (Ansari et al. 2024; Ye
et al. 2025b). For drug discovery, the human-Controller guides the search toward a target protein and
sets the property limits. The AI-Explorer generates and ranks candidate molecules to meet these goals
(Kwon et al. 2024). Furthermore, in gene analysis, the human-Controller prioritizes which biological
relationships are important for the search. The Al-Explorer can then use these relationship patterns to
predict gene pairs that cause cell death (Jiang et al. 2025b).

Al-Informer & Human-Explorer . The Al-Informer can gather evidence or predictions, while the
human-Explorer analyzes them to propose new candidates. For example, in biomedical research,
the Al-Informer integrates dispersed findings from the literature, helping the human-Explorer infer
potential hypotheses about relationships among biological factors (Jiang et al. 2025a). Additionally,
some Al-Informers can assist in retrieving relevant information from large volumes of data. For
instance, this can enable human-Explorers to explore promising compound candidates (Shi et al. 2023b)
or find similar image patches that support diagnostic theories (Corvo et al. 2021). In materials science,
the Al-Informer forecasts physical properties such as conductivity, allowing the human-Explorer to
combine these predictions to explore stable electrolytes for batteries (Pu et al. 2022).

3.2.3. Experiment Stage

The experiment stage involves designing and conducting tests to validate proposed hypotheses.
In this phase, humans and Al collaborate to plan procedures and manage physical or computational
processes to collect data.

Al-Controller & Human-Controller. During physical execution, the workflow functions as a
shared control loop in which the Al and human manage different levels of the process. The Al-
Controller handles immediate machine tasks, while the human-Controller directs the overall strategy.
For instance, in robotic laboratories, the AI-Controller performs physical actions such as manipulating
chemical samples. Human-Controller supervises the operation and updates targets based on real-time
observations (Darvish et al. 2025). In materials laboratories, AI-Controller automates major steps
from material preparation to characterization, while human-Controller provides oversight and adjusts
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actions based on the results (Ni et al. 2024). Similarly, in electron microscopy, the AI-Controller
manages instrument settings to optimize data collection. Human-Controller monitors the live stream
and directs the beam to explore relevant sample areas (Pratiush et al. 2024).

Al-Explorer & Human-Evaluator . When an experiment involves multiple steps, the AI-Explorer
drafts a step-by-step plan. The human-Evaluator then reviews the final plan, corrects any errors, and
determines whether it is usable. For example, some Al-Explorers draft chemistry workflows by calling
external chemistry tools during the planning phase, then return a complete procedure for human-
Evaluators to review (Boiko et al. 2023; Bran et al. 2024). In gene editing, an Al-Explorer can generate
an experimental plan, including suggested guide choices and key setup steps, with a human-Evaluator
reviewing the final output before execution (Qu et al. 2025). For multi-step synthesis planning, the
Al-Explorer proposes a full reaction route, and the human-Evaluator edits or replaces problematic
steps in the route before laboratory work begins (Shi et al. 2023a). Furthermore, some Al-Explorers
return a small set of candidate procedures along with a brief test plan, allowing human-Evaluators
to edit the selected option and finalize what will be executed (Bazgir et al. 2025; Gottweis et al. 2025;
Swanson et al. 2025).

Al-Informer & Human-Explorer . Before conducting physical experiments, the Al-Informer quickly
forecasts potential results. The human-Explorer navigates these predictions to find the optimal
experimental conditions. For instance, in material design, the Al-Informer predicts how structures
deform, while the human-Explorer searches the design space to drive configurations that achieve the
desired shape changes (Yang et al. 2020). For biological simulations, the Al-Informer predicts yeast cell
polarization, allowing the human-Explorer to navigate the parameter space and explore settings that
match real-world observations (Hazarika et al. 2020). In chemical synthesis, the Al-Informer maps out
alternative reaction pathways and provides risk estimates. Then the human-Explorer explores these
pathways to develop a practical plan for laboratory execution (Wang et al. 2025c).

3.2.4. Role Differences Across Three Stages

Figure 2 illustrates a distinct imbalance in the distribution of human and Al roles across the three
stages of scientific discovery. The observation stage frequently features the combination of Al-Informer
and human-Explorer. In contrast, the hypothesis stage shows a significant shift toward the pairing of
Al-Explorer and human-Evaluator. The experiment stage reveals a trend in which Al-Controller and
human-Controller collaborate in executing protocols.
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Figure 2. The human-AlI collaboration patterns across three scientific discovery stages.

This imbalance reflects the differing cognitive and operational demands across discovery stages.
The observation stage is inherently open-ended, relying heavily on human insight to interpret phe-
nomena and identify meaningful patterns, with Al primarily acting as an Informer that aggregates
and summarizes data. As inquiry advances to the hypothesis stage, the problem space becomes more
structured, allowing Al to systematically explore candidate hypotheses, while humans increasingly
assume the Evaluator role to assess plausibility. In the experiment stage, the focus shifts to procedural
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execution, where requirements for correctness, safety, and reproducibility motivate a shared Controller
role, with Al supporting automation and parameter control under human oversight.

These patterns indicate that human—AlI role allocation in scientific discovery dynamically recon-
figures as epistemic uncertainty decreases and task structure increases. Humans dominate stages that
demand sensemaking under ambiguity and normative judgment, whereas Al gains prominence as
tasks become formalizable and computationally searchable. Notably, the experiment stage reflects a
convergence rather than a transfer of control, highlighting the need to preserve meaningful human
authority even in highly automated settings. This suggests that effective human—AlI collaboration
should adapt role assignments across discovery stages, rather than imposing static responsibilities
throughout the workflow.

4. Discussion

Built upon the key findings from our systematic survey, this section discusses several significant
challenges and potential future research directions for human-AlI collaboration in scientific discovery.

4.1. From Asymmetric Growth to Symbiotic Evolution

From Figure 3, we can observe that the evolution of roles reveals a complementary pattern: Al's
development is specialized in computational tasks, while human involvement remains concentrated
on high-judgment functions. Specifically, Figure 3a indicates that humans are least used as Informers
but dominate as Evaluators and Controllers, with a strong presence as Explorers. This confirms that
humans anchor the process in critical judgment, contextual reasoning, creative thinking, and ethical
decision-making—areas requiring deep expertise and accountability. In contrast, Figure 3b shows
that Al is predominantly deployed as an Informer and Explorer, with steady growth as a Controller.
The Evaluator role remains minimal. This reflects a rational deployment of Al for its core strengths:
processing data at scale, exploring solution spaces, and automating procedural workflows.

[] Informer 30 30
» 25 o 25
[ Explorer 2 2
£ 20 & 20
[] Controller Lg 15 § 15 )
ES) ES)
[l Evaluator § 10 § 10
5 5
e
01 0
2016 2018 2020 2022 2024 2016 2018 2020 2022 2024

(a) Human Role Evolution (b) AI Role Evolution

Figure 3. Evolution of human and Al roles.

The scarcity of the Al-Evaluator is the most pronounced example of this lag, stemming from funda-
mental technical gaps. Scientific evaluation requires: (1) Calibrated uncertainty quantification, whereas
current models often provide overconfident point estimates, risking unreliable conclusions Heo et al.
(2025); Xie et al. (2025). (2) Causal and mechanistic reasoning, beyond surface pattern recognition; with-
out understanding the underlying “why”, evaluations may be misled by spurious correlations Chen
et al. (2024). (3) Contextual and normative judgment, aligning with tacit scientific standards—a chal-
lenge reflected in Al’s difficulty with complex, value-laden trade-offs Rezaei et al. (2025). These
challenges in reliability, depth, and contextual alignment currently limit Al’s role as a primary evalua-
tor. Notably, the Al-Controller role also depends on robust reasoning and trustworthy autonomy. This
shared need for reliability explains why its development, while progressing, remains more cautious
than that of the well-established Informer and Explorer roles.

To evolve from the current functional division into a deeper, symbiotic partnership, future re-
search must address these core limitations across roles. One potential direction is the development
of Al-Controllers that go beyond basic workflow execution toward verifiable robustness. This ne-
cessitates benchmarks for failure recovery and methods for explainable workflow logic, ensuring
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systems can be audited and trusted in dynamic environments. As for Al-Evaluators, the focus should
shift from automation to calibrated assistance. The immediate goal should be to develop tools that
provide uncertainty-quantified assessments and evidence-attributed rationales, augmenting rather
than replacing human judgment. In addition, effective collaborative design demands interfaces that
formally position the human as a strategic supervisor. These systems should streamline the oversight
of Al-generated options, making the human’s role in guidance, interpretation, and final validation
more efficient.

4.2. Generative Interfaces for Supporting Human Involvement

Most existing interfaces for human-AlI collaboration in scientific discovery are highly customized,
often tailored to specific domains or discovery tasks. While such designs enable deep integration with
domain workflows, they limit reusability and hinder generalization to other contexts. Recent advances
in generative Al for user interface generation offer new opportunities to address this limitation (Chen
et al. 2025). Rather than designing fixed, task-specific interfaces, future systems could dynamically
generate interfaces that adapt to human responsibilities, such as exploration, evaluation, or control,
throughout the scientific discovery process. Such context-aware interfaces have the potential to both
enhance human oversight and maintain flexibility in exploration, paving the way for more effective
human-AlI collaboration.

However, there are still several challenges. First, generative UI can implicitly constrain human
exploration pathways. In scientific discovery, research directions emerge through iterative choices
about variables, comparisons, and analytical operations rather than being predefined. When a Ul
is generated dynamically, these choices are partially delegated to the interface, which determines
what controls, views, and exploration paths are available. Consequently, valid lines of inquiry may
remain unexplored—not due to lack of scientific merit, but because they are interactionally unavailable.
Therefore, it is critical to consider how to design generative interfaces that preserve open-ended
exploration without inadvertently narrowing or biasing scientific discovery. Second, hallucinations in
generative Uls pose heightened risks. Scientific data are often heterogeneous and multimodal, and
even governed by domain-specific constraints Sheng et al. (2025a); Wang et al. (2025c), which can
further exacerbate hallucinations in generative Al. Future work should therefore focus on developing
domain-aware generative models, benchmarks, and evaluation protocols that explicitly test whether
generated interfaces respect data compatibility, experimental assumptions, and validity constraints.

4.3. Adaptive Role Assignments Between Human and Al

Existing human-AlI collaborative research typically predefines the roles of human and Al based
on their abilities and limitations to solve scientific discovery tasks (Hong et al. 2024; Jiang et al.
2024). However, scientific research is an inherently creative, exploratory, and non-linear process, in
which research goals, hypotheses, and methods often evolve based on intermediate findings. Such
static designs fail to adapt to the uncertainty in the discovery process. Fixed role assignments may
overlook scenarios where Al demonstrates unexpected proficiency in non-traditional tasks or where
human intervention becomes necessary due to contextual judgments that exceed the predefined scope
of automation. These limitations necessitate a paradigm shift toward dynamic and adaptive role
assignment between humans and Al Rather than framing human—AI collaboration as a predefined
division of labor, future research should conceptualize it as a problem of dynamic coordination. The
roles of human and Al and their task allocation can be continuously negotiated based on contextual
signals such as task difficulty, model confidence, experimental risk, and human cognitive load.

4.4. Empowering Embodied Al in Scientific Experiments

The papers in our corpus that address the experiment stage of scientific discovery primarily
emphasize data analysis, while only a few investigate Al support for the practical execution of exper-
imental processes. However, in domains like biology, chemistry, and medicine, scientific discovery
fundamentally relies on a large number of physical laboratory experiments rather than data analysis
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alone (Luro et al. 2020; Wright et al. 2014). Embodied Al offers the potential to bridge this gap by
converting Al models’ planning capabilities into concrete experimental actions and operating di-
rectly at the laboratory bench (Pratiush et al. 2024).It tightens the coupling between scientific research
decision-making and execution, allowing errors or uncertainties in Al-generated plans to directly
affect physical experiments. This raises the stakes of human oversight and requires more continuous,
real-time engagement across both conceptual and operational levels. These shifts highlight the need to
carefully consider how humans can be more effectively integrated into the loop.

4.5. Long-Term Implications for Leveraging Al in Scientific Discovery

As Al becomes increasingly powerful, the emergence of large language models has enabled
systems to handle the entire research process, from hypothesis generation to experimental design and
even paper writing (Schmidgall et al. 2025). In this context, it is increasingly important to consider the
long-term implications of integrating Al into scientific workflows.

First, future work should establish standardized, auditable protocols for tracing Al involve-
ment throughout the research process, rather than merely declaring Al usage. This can include
the queries posed to Al systems, the full set of alternatives they generate, and the points at which
human researchers intervene, modify, or reject Al suggestions. Such protocols enable process-level
reproducibility, accountability, and responsible attribution of human and Al contributions, thereby
supporting the long-term sustainability of the Al-augmented scientific ecosystem.

Second, the widespread use of Al in hypothesis exploration and decision-making raises important
epistemic questions about how scientific reasoning may be reshaped over time. By mediating which
hypotheses are generated, prioritized, or discarded, Al systems may systematically influence scientists’
exploration strategies and cognitive trajectories. Future research should empirically identify the stages
at which reliance on Al may gradually reshape key forms of human judgment (e.g., intuition, value-
based reasoning, or cross-domain insight) and assess whether such shifts introduce systematic bias or
ethical risk.

5. Conclusion

In this work, we presented a systematic review of human-Al collaboration in scientific discovery,
focusing on the roles of humans and Al across the stages of observation, hypothesis, and experiment.
By introducing a novel taxonomy of four roles of human-AlI collaboration (i.e., Informer, Explorer,
Evaluator, and Controller), we provided a framework to better understand how Al and humans
interact and contribute throughout the discovery process. Through our analysis, we identified key
collaboration patterns and highlighted critical gaps, including challenges related to role coordination,
validation, and transparency. Finally, we outlined a research agenda for developing more adaptive,
trustworthy, and efficient human-AI systems.

Limitations

One limitation of this study is that we only included papers that explicitly address specific
problems in the three stages of scientific discovery, while excluding more general-purpose papers,
such as those aimed at assisting humans with tasks like writing or data collection. This choice was
made because such tools operate outside the three main stages we focus on, serving more preparatory
or subsequent roles. Nevertheless, these tools remain important, and future work could explore how
they can be integrated into a broader framework of scientific discovery. Another limitation is that
our analysis focuses exclusively on the natural sciences. This is because methodologies in the social
sciences differ substantially, which may result in human—AlI collaboration approaches that do not
directly align with those observed in the natural sciences. Future work could explore whether our
taxonomy can be adapted or extended to the social sciences.
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Appendix A. Coding Results

Stage | HumanRole |  AlRole |

[/ dddtises

A Predictive Visual Analytics System for Studying Neurodegenerative Disease Based on DTI Fiber Tracts
Bioinformatics Agent (BIA): Unleashing the Power of LLMs to Reshape Bioinformatics Workflow
CellScout: Visual Analytics for Mining Biomarkers in Cell State Discovery

ChemVA: Interactive Visual Analysis of Chemical Compound Similarity in Virtual Screening
ClimateSOM: A Visual Analysis Workflow for Climate Ensemble Datasets

Completing A Systematic Review in Hours instead of Months with Interactive Al Agents

DASS Good: Explainable Data Mining of Spatial Cohort Data

DIffFit: Visually-Guided Differentiable Fitting of Molecule Structures to a Cryo-EM Map

DTBIA: An Immersive Visual Analytics System for Brain-Inspired Research

Explaining Air Quality Forecast for Verifying Domain Knowledge using Feature Importance Visualization

Extending the Nested Model for User-Centric XAl: A Design Study on GNN-based Drug Repurposing

Facetto: Combining Unsup: and Supervised Learning for i ype Analysis in Multi-Channel Image Data
GeneAgent: self-verification language agent for gene-set analysis using domain databases

HealthPrism: A Visual Analytics System for Exploring Children’s Physical and Mental Health Profiles with Multimodal Data

IdMotif: An Interactive Motif Identification in Protein Sequences

Lessons from the Development of an Anomaly Detection Interface on the Mars Perseverance Rover using the ISHMAP Framework

Optimal Dimensionality Selection Using Hull Heatmaps for Single-Cell Analysis

Roses Have Thorns: L ing the Downside of O Care Delivery Through Visual Analytics and Sequential Rule Mining
THALIS: Human-Machine Analysis of Longitudinal Symptoms in Cancer Therapy

Visualizing and Comparing Machine Learning Predictions to Improve Human-Al Teaming on the Example of Cell Lineage

Uncover: Toward Interpretable Models for Detecting New Star Cluster Members

Cell2Cell: Explorative Cell Interaction Analysis in Multi-Volumetric Tissue Data

TrajLens: Visual Analysis for C ing Cell D Trajectories in Cross-Sampl

Visual Analysis of Multi-Outcome Causal Graphs

HypoChainer: A Collaborative System Combining LLMs and Knowledge Graphs for Hypothesis-Driven Scientific Discovery
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning

ChatDrug: Conversational Drug Editing with Retrieval and Domain Feedback

Cl ive Visual of the Chemical Space

DIVA: and Validation of Drug-Drug
DrugAssist: A LLM for Molecule Optimization

dZiner: Rational Inverse Design of Materials with Al Agents

: Visual on predicting ionic conductivity for solid-state electrolytes

MedChemLens: An Interactive Visual Tool to Support Direction Selection in Interdisciplinary Experimental Research of Medicinal Chemistry
Scideator: Human-LLM Scientific Idea Generation Grounded in Research-Paper Facet Recombination

SLinterpreter: An Exploratory and Iterative Human-Al Collaborative System for GNN-Based Synthetic Lethal Prediction

SPARK: Harnessing Human-Centered Workflows with Biomedical Foundation Models for Drug Discovery

Visual Analytics for Hypothesis-Driven inC ional Pathology

H in-the-loop interface for i in Electron Mi Y, characterization
SimuLearn: Fast and Accurate Simulator to Support Morphing Materials Design and Workflows

NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation

SynthLens: Visual Analytics for Facilitating Multi-Step Synthetic Route Design

RetroLens: A Human-Al Collaborative System for Multi-step Retrosynthetic Route Planning

CRISPR-GPT for agentic automation of gene-editing experiments

ChemCrow: Augmenting LLMs with Chemistry Tools

ORGANA: A Robotic Assistant for Chemistry i and Cl

An automatic end-to-end chemical synthesis development platform powered by large language models

SciClaims: An End-to-End System for Bi ical Claim Analysis

MatAgent: A human-in-the-loop multi-agent LLM framework for the material science discovery cycle
The Virtual Lab of Al agents designs new SARS-CoV-2 nanobodies

Towards an Al Co-Scientist

MatPilot: an LLM-enabled Al Materials Scientist under the Framework of H Machine C
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