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Abstract

To address the practical challenges of diverse anomaly patterns, strongly coupled dependencies, and
high labeling costs in large-scale complex infrastructures, this paper presents an unsupervised
anomaly detection method that integrates graph neural networks with Transformer models. The
approach learns normal system behavior and identifies deviations without relying on anomaly labels.
Infrastructure components are abstracted as nodes in a dependency graph, where nodes are
characterized by multiple source observability signals. A graph encoder aggregates neighborhood
information to produce structure-enhanced node representations. Self-attention mechanisms are
introduced along the temporal dimension to capture long-range dynamic dependencies. This design
enables joint modeling of structural relations and temporal evolution. A reconstruction-based
training strategy is adopted to constrain the learning of normal patterns. Reconstruction error is used
to derive anomaly scores for detection. To ensure reproducibility and ease of deployment, complete
specifications of data organization, training procedures, and key hyperparameter settings are
provided. Comparative experiments on public benchmarks demonstrate overall advantages across
multiple evaluation metrics and confirm the effectiveness of the proposed framework in representing
anomaly propagation and temporal drift characteristics in complex systems.

Keywords: unsupervised anomaly detection; dependency graph modeling; temporal self-attention;
reconstruction error scoring

I. Introduction

With the widespread adoption of cloud computing, microservice architectures, and distributed
systems, modern information infrastructures continue to evolve toward large scale, heterogeneity,
and high dynamism. Complex and tight dependencies have emerged among computation, storage,
networking, and application services[1,2]. As a result, system states exhibit strong nonlinearity and
coupling. Under such conditions, anomalies can rapidly propagate along dependency paths once
they occur. This propagation may trigger cascading failures and lead to severe service disruptions
and business losses. Therefore, timely and accurate identification of potential anomalies in complex
large-scale infrastructures has become a critical issue for ensuring system stability and advancing
intelligent operations and maintenance.

Most traditional anomaly detection approaches rely on manually defined rules or single metric
thresholds to monitor system states through local and static judgments. These methods remain
partially effective when the system scale is limited and operational patterns are relatively stable.
However, they struggle in realistic environments characterized by high dynamics and heterogeneous
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data sources[3]. On one hand, rule-based methods depend heavily on expert knowledge, incur high
maintenance costs, and show poor transferability. On the other hand, methods based on independent
time series often ignore structural relationships among components. They fail to capture how
anomalies propagate within the system. This limitation constrains their ability to recognize complex
failure patterns[4].

Advances in monitoring technologies enable modern infrastructures to continuously generate
large volumes of observability signals. These include performance metrics, execution logs, and
distributed traces. Such data reflect system states from multiple perspectives and provide a richer
foundation for anomaly detection[5]. However, multi-source observability data differ substantially
in temporal resolution, semantic granularity, and noise characteristics. Simple feature concatenation
or isolated modeling is insufficient to exploit their latent correlations and dynamic patterns. In
unsupervised settings, the lack of reliable anomaly labels further increases modeling difficulty. This
situation calls for a unified modeling paradigm that can automatically learn intrinsic operational
patterns while remaining sensitive to deviations.

From a system-level perspective, large-scale infrastructures can be abstracted as complex
networks composed of functional components and their dependency relationships. Anomalies are
rarely isolated events. They are often embedded as structural changes or temporal shifts within
dependency graphs. Modeling individual components solely along the time dimension is inadequate
for identifying anomalies caused by cross-component interactions[6]. Focusing only on structural
relations while ignoring temporal evolution also fails to reflect how system states accumulate and
change over time. Consequently, jointly modeling structural dependencies and temporal dynamics
is essential for improving the accuracy and anticipatory capability of anomaly detection.

Against this backdrop, developing an unsupervised anomaly detection approach that
simultaneously captures dependency graph structure and temporal dynamics is of significant
theoretical and practical value. Such methods can overcome the limitations of threshold and rule-
driven techniques by enabling adaptive modeling of complex system behaviors and more expressive
risk representations. Moreover, early detection and precise localization of anomalous behaviors can
effectively reduce the impact of fault propagation and improve infrastructure reliability and
operational efficiency[7]. As system scale continues to expand and operational environments grow
increasingly complex, exploring anomaly detection frameworks that integrate structure awareness
with temporal modeling remains a crucial direction for intelligent operations and highly reliable
system construction.

I1. Background

Anomaly detection for cloud and microservice environments has been extensively studied, with
surveys emphasizing the diversity of anomaly types, the heterogeneity of observability signals, and
the difficulty of achieving reliable detection under evolving workloads. Early systematic reviews
summarize common modeling paradigms and deployment constraints in cloud environments,
highlighting that practical methods must balance detection accuracy with scalability and noise
tolerance [8]. More recent surveys further stress that modern service-based systems require unified
analysis across metrics, logs, and traces, and that dependency-aware modeling is crucial for
identifying fault propagation and supporting root cause localization [9]. In addition to survey
literature, recent applied work continues to reflect the breadth of anomaly detection designs in cloud
settings, reinforcing the need for robust representation learning to handle distribution shift and
complex operational patterns [10].

Methodologically, deep sequence modeling provides a strong basis for learning normal
temporal behavior in an unsupervised or weakly supervised manner. Attention-augmented recurrent
models demonstrate that selectively focusing on informative time segments can improve anomaly
sensitivity while mitigating noise effects [11], and attention-based temporal modeling has also been
used to capture long-range dependencies for risk-related prediction in complex time series [12].
Beyond purely temporal encoders, recent work introduces contrastive learning to strengthen
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dependency representations by pulling consistent patterns together and separating abnormal
behaviors in embedding space, which can improve robustness under changing system conditions
[13]. These directions motivate combining temporal self-attention with reconstruction-style objectives
to learn stable normality manifolds for anomaly scoring.

Another important trend is incorporating structure and explicit dependencies into the detection
pipeline. Dynamic graph modeling and relational representation learning have been adopted to
encode interactions among entities and to improve robustness under evolving dependencies,
illustrating how graph-based inductive bias can complement temporal modeling when anomalies
propagate across components [14]. Causal graph modeling and causally constrained representation
learning further emphasize suppressing spurious correlations and improving explanation
faithfulness through structured constraints, providing transferable methodology for making
anomaly decisions more interpretable and traceable [15]. Complementarily, meta-learning has been
explored to handle sample scarcity and evolving patterns, offering principles for rapid adaptation
when anomaly characteristics shift over time [16]. Together, these works support the perspective that
effective anomaly detection in complex infrastructures benefits from jointly modeling temporal
evolution, dependency structure, and robustness-oriented representation learning.

Finally, recent advances in large language model ecosystems provide additional tools for
reliability, interpretability, and privacy-aware deployment. Knowledge-augmented agent
frameworks highlight mechanisms for integrating external structured knowledge into decision
pipelines to improve explainability and controllability [17]. Risk-aware and uncertainty-aware
summarization focuses on compressing evolving contexts while preserving critical signals, which can
support efficient state summarization and alert reporting in monitoring systems [18]. Parameter-
efficient fine-tuning methods, including privacy-preserving adaptation, demonstrate how to update
large models with constrained parameter changes and privacy guarantees, offering a methodological
blueprint for adapting components in production settings without full retraining or excessive data
exposure [19]. Related studies on collaborative evolution in complex multi-component systems
further emphasize coordinated adaptation and robustness as conditions evolve [20], while multi-
scale LoRA fine-tuning illustrates lightweight adaptation across different granularities that can be
useful when tuning auxiliary models for monitoring and diagnosis tasks [21].

III. Method

In complex infrastructure environments, a system can be abstracted as a dynamic graph
structure composed of multiple components and their dependencies. Let the system's dependencies
at time t be represented as a directed graph G, = (V,E;), where V represents the set of nodes
corresponding to service or resource components in the system, and E; represents the set of
dependency edges at time t. Each node v; € V is associated with a set of multi-source observable
signals, represented as a time series x; = {x},x7,...,x7}. Through this graph-sequence joint
representation, the system's structural dependencies and temporal evolution are modeled in a unified
manner, providing a structured input foundation for subsequent anomaly modeling. This article
presents the overall model architecture diagram, as shown in Figure 1.

| Metrics Y  Graph Encoder
Logs ] e T
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Dynamic BB  Temporal Attention
Dependency Graph

S g Temporal Sequence Modeling

Figure 1. Overall model architecture diagram.
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To effectively capture the dependencies and structural context among nodes, this study
introduces and implements a graph structure modeling mechanism at each time step, which performs
neighborhood aggregation on node features to encode local and global relationships. This
aggregation process draws on the temporal-aware graph neural architecture proposed by Zhang et
al. [22], which demonstrates the advantages of dynamically integrating structural context for
comprehensive anomaly detection in microservices. Building on this, the model further leverages
spatiotemporal aggregation strategies introduced by Qiu et al. [23] to jointly represent spatial
dependencies and temporal correlations within distributed backend systems. To enhance
adaptability in large-scale and dynamic environments, the neighborhood aggregation scheme
incorporates collaborative feature propagation mechanisms inspired by Yao, Liu, and Dai [24],
ensuring robust representation even under shifting topology and heterogeneous data sources. The
formal aggregation operation is defined as follows. For node v;, its structure-aware representation is
obtained by weighted aggregation of neighboring node information, formally represented as:

hi = 0(Zjenc) @ijWoxf) O]
Where N(i) represents the set of neighbors of node v;, W, is a learnable linear mapping matrix,
and o(-) represents a non-linear activation function. The weight coefficient E is used to characterize
the strength of the dependency between nodes, and it is defined as:

exp(al [xf|1x}])

a;; =
YU Tkenc exp@T[xfl|xL])

@

Here, a represents a learnable parameter, and || represents a vector concatenation operation.
Through this structural modeling process, node representations can explicitly incorporate contextual
information from the dependency graph.

After obtaining the structurally enhanced node representations, to further capture the evolution
of the system's operating state over time, a time modeling module based on a self-attention
mechanism is introduced to model the dynamic behavior of nodes in the time dimension. For node
v;, its time series representation is denoted as H; = [/2%, . /il-T] . The time attention mechanism
calculates the hidden state in the following form:

QK]
Z; = softmax(W)Vi 3)

Where Q;,V;, K; is the learnable parameter matrix, and d represents the feature dimension. This
process can adaptively focus on the importance of different time segments to the current state,
thereby modeling long-term time dependencies and potential anomalous evolution trends.

In unsupervised anomaly detection scenarios, the model identifies deviations by learning the
normal operating patterns of the system. To this end, a reconstruction-based objective function is
introduced to constrain the joint structural and temporal representations. The reconstruction error of
the node v; attime t is defined as:

ef = |lx{ — %{|1 4)

Where X{ represents the model's reconstruction result of the original input. The overall optimization
objective function is defined as:
L =Yy Xe=16f (%)
This objective prompts the model to fully characterize the system's normal structure and
temporal patterns during training. When significant shifts occur in the system's operational state in
terms of structural relationships or temporal behavior, the corresponding reconstruction error will
change, thus providing a unified and interpretable metric basis for anomaly detection.

IV. Experimental Results

A. Dataset

This study employs the Server Machine Dataset, SMD, as the experimental dataset. SMD is an
open-source multivariate time series dataset designed for anomaly detection in cloud server
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monitoring scenarios. It captures state fluctuations and anomalous segments observed during long-
term operation of real servers. The dataset effectively reflects metric-centered observability signals in
large-scale infrastructures. Due to its public availability and strong reproducibility, SMD is well-
suited as a unified evaluation benchmark for unsupervised anomaly detection. It is also highly
aligned with the emphasis on temporal dynamic modeling in this work.

The dataset consists of monitoring metric sequences collected from multiple servers. Each server
corresponds to a multivariate time series with dozens of dimensions. These dimensions typically
include statistics related to CPU, memory, disk, and network usage. Point-wise anomaly annotations
are provided for evaluation purposes. This design supports a consistent setting where training is
unsupervised, and evaluation is supervised. The data are organized at the machine level and include
separate training and testing splits. The training data are mainly used to learn normal operating
patterns. The testing data contain more complex fluctuations and anomalous intervals, which allow
assessment of model sensitivity and robustness to deviations.

To better support the joint modeling paradigm of dependency graphs and temporal dynamics,
each server is treated as a node in a graph. The multivariate metric sequences within a temporal
window are used as node features. Dependency edges are constructed based on statistical
dependence or correlation across machines. Edge weights can be updated using sliding windows to
form a dynamic dependency graph. In this way, the model can exploit graph structure to capture
cross-node interaction patterns. It can also leverage temporal modeling to describe the evolution of
both local and global system states. This design enables full support of the proposed methodology
on a standardized and open dataset.

B. Experimental Setup

An unsupervised training paradigm is adopted for anomaly detection modeling in this study.
During training, only normal sequences from the training set are used, and no anomaly labels are
introduced. The model input consists of multivariate monitoring sequences segmented by sliding
windows, together with a dependency graph constructed from statistical dependencies as a structural
prior. At each time step, a graph encoder integrates neighborhood information to obtain structure-
enhanced node representations. A temporal attention module is then applied to learn long-range
temporal dependencies. The reconstruction network outputs reconstructed observations, and the
reconstruction error is used as the training objective for end-to-end optimization. The AdamW
optimizer is employed with a learning rate of 0.0001 and a batch size of 64. The window length is set
to 100, the hidden dimension to 128, the weight decay to 0.01, and the dropout rate to 0.1. An early
stopping strategy is applied when the validation reconstruction loss no longer decreases.. A
thresholding strategy is then used to map anomaly scores to anomaly decisions. This process enables
the detection of deviations in operating states without relying on anomaly annotations.

C. Experimental Results

This paper first conducts a comparative experiment, and the experimental results are shown in
Table 1.

Table 1. Comparative experimental results.

Model Acc(%) Precision(%) | Recall(%) | F1-Score(%)
Glad[25] 473 44.8 42.1 434
Mambaad[26] 51.6 49.7 46.8 48.2
Dinomaly[27] 53.9 52.4 49.1 50.7
Geo-Hgan[28] 55.8 54.1 52.7 53.4
Autouad[29] 56.7 55.2 53.0 54.1
ADS-Bpois[30] | 58.4 56.8 55.1 559
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Ours 62.1 61.0 60.3 60.6

Baseline methods show incremental but uneven gains on complex infrastructure anomaly
detection, reflecting the limits of single-perspective modeling for multifactor disturbances and
cascading failures. In contrast, the proposed method leads across all metrics, achieving a more
balanced precision-recall trade-off and stable discrimination by jointly modeling dependency graphs
and temporal dynamics—aligning with how anomalies propagate and evolve in real systems. This
yields more separable and threshold-robust anomaly scores, which is critical for unsupervised
deployment and early warning. Finally, since representation capacity affects the ability to encode

structure and long-range dynamics, we assess sensitivity to hidden dimension with other settings
fixed; results are shown in Figure 2.
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Figure 2. The impact of hidden dimensions on experimental results.

The subplots show that hidden dimension directly controls representational capacity and thus
discrimination and class separation. Small dimensions over-compress structure and temporal cues,
weakening cross-component interactions and blurring normal-behavior boundaries, which reduces
sensitivity to subtle anomalies. A moderate dimension yields the best balance, allowing graph
structure and temporal attention to jointly encode anomaly propagation and drift while suppressing
noise, producing more stable unsupervised representations. Larger dimensions offer sharper
discrimination for some patterns but increase flexibility and noise sensitivity, leading to overfitting
and degraded coverage. Overall, hidden dimension is a critical hyperparameter requiring a trade-off
between expressiveness and robustness; Figure 3 further examines the effect of time-window length.
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Figure 3. The effect of time window length on experimental results.

The subplots show that temporal window length strongly shapes anomaly detection: short
windows focus on local fluctuations and miss delayed cross-component effects, making decisions
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sensitive to noise, while moderate windows provide sufficient context for graph-based dependencies
and temporal attention to capture anomaly propagation and cumulative drift. However, overly long
windows introduce misaligned trends, workload cycles, and irrelevant fluctuations that dilute
representations or cause over-smoothing under unsupervised reconstruction, creating a trade-off
between coverage and precision. These results indicate that window length must be carefully aligned
with dependency graph modeling—large enough to capture anomaly evolution paths, but not so
large that noise dominates—to ensure robust early warning and reliability.

V. Conclusions

This work addresses the demand for unsupervised anomaly detection in large-scale and
complex infrastructures. It proposes a unified modeling framework that integrates dependency
graph structure with temporal dynamics to better reflect coupled propagation and evolution of
anomalies in real systems. Structural context and temporal dependencies are jointly exploited at the
representation level. This enables the model to learn clearer boundaries of normal behavior without
anomaly labels and to map deviations into interpretable anomaly scores. Comparative results
demonstrate overall advantages across multiple evaluation metrics. These findings indicate that
coordinated design of graph structure awareness and long-range temporal modeling improves
coverage of complex failure patterns and enhances decision stability. The framework provides a more
transferable technical path for reliable detection in practical operations. From an application
perspective, the proposed approach has direct relevance to cloud platforms, microservice systems,
data center operations, and critical information infrastructures. Earlier and more robust anomaly
identification can shorten fault discovery and response chains. It can reduce the cost of risk
propagation caused by downtime and cascading failures. Service availability and resource utilization
can be improved. Joint structural and temporal representations align naturally with system
dependency relations as operational facts. They provide more reliable signals for alert aggregation,
impact assessment, and troubleshooting decisions. In deployment, this unsupervised approach also
offers low labeling cost and fast adaptation. It supports long-term usability in environments with
multiple services, regions, and frequent version iterations. This contributes to the evolution of
intelligent operations toward higher automation and reliability.

Looking ahead, several directions remain to further enhance generality and engineering
readiness. First, unified representation learning can be extended to more complex observability
modalities. Metrics, logs, and traces can be aligned more closely within a single framework to
strengthen consistent modeling of multi-source anomaly cues. Second, stronger online updating and
drift adaptation mechanisms can be incorporated. This helps maintain a stable normal pattern
characterization under changing business policies, elastic scaling, and system upgrades. With these
extensions, the proposed joint structural and temporal unsupervised detection paradigm can be
applied to a broader range of critical infrastructures and continue to enhance system resilience and
operational reliability.
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