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Abstract 

To address the practical challenges of diverse anomaly patterns, strongly coupled dependencies, and 

high  labeling  costs  in  large‐scale  complex  infrastructures,  this  paper  presents  an  unsupervised 

anomaly detection method  that  integrates graph neural networks with Transformer models. The 

approach learns normal system behavior and identifies deviations without relying on anomaly labels. 

Infrastructure  components  are  abstracted  as  nodes  in  a  dependency  graph,  where  nodes  are 

characterized by multiple source observability signals. A graph encoder aggregates neighborhood 

information  to  produce  structure‐enhanced  node  representations.  Self‐attention mechanisms  are 

introduced along the temporal dimension to capture long‐range dynamic dependencies. This design 

enables  joint  modeling  of  structural  relations  and  temporal  evolution.  A  reconstruction‐based 

training strategy is adopted to constrain the learning of normal patterns. Reconstruction error is used 

to derive anomaly scores for detection. To ensure reproducibility and ease of deployment, complete 

specifications  of  data  organization,  training  procedures,  and  key  hyperparameter  settings  are 

provided. Comparative experiments on public benchmarks demonstrate overall advantages across 

multiple evaluation metrics and confirm the effectiveness of the proposed framework in representing 

anomaly propagation and temporal drift characteristics in complex systems. 

Keywords: unsupervised anomaly detection; dependency graph modeling; temporal self‐attention; 

reconstruction error scoring 

 

I. Introduction 

With the widespread adoption of cloud computing, microservice architectures, and distributed 

systems, modern information infrastructures continue to evolve toward large scale, heterogeneity, 

and high dynamism. Complex and tight dependencies have emerged among computation, storage, 

networking, and application services[1,2]. As a result, system states exhibit strong nonlinearity and 

coupling. Under such conditions, anomalies can  rapidly propagate along dependency paths once 

they occur. This propagation may trigger cascading failures and lead to severe service disruptions 

and business losses. Therefore, timely and accurate identification of potential anomalies in complex 

large‐scale  infrastructures has become a critical  issue  for ensuring system stability and advancing 

intelligent operations and maintenance. 

Most traditional anomaly detection approaches rely on manually defined rules or single metric 

thresholds  to monitor  system  states  through  local  and  static  judgments.  These methods  remain 

partially effective when  the  system  scale  is  limited and operational patterns are  relatively  stable. 

However, they struggle in realistic environments characterized by high dynamics and heterogeneous 
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data sources[3]. On one hand, rule‐based methods depend heavily on expert knowledge, incur high 

maintenance costs, and show poor transferability. On the other hand, methods based on independent 

time  series  often  ignore  structural  relationships  among  components.  They  fail  to  capture  how 

anomalies propagate within the system. This limitation constrains their ability to recognize complex 

failure patterns[4]. 

Advances in monitoring technologies enable modern infrastructures to continuously generate 

large  volumes  of  observability  signals.  These  include  performance metrics,  execution  logs,  and 

distributed traces. Such data reflect system states from multiple perspectives and provide a richer 

foundation for anomaly detection[5]. However, multi‐source observability data differ substantially 

in temporal resolution, semantic granularity, and noise characteristics. Simple feature concatenation 

or  isolated modeling  is  insufficient  to  exploit  their  latent  correlations  and  dynamic  patterns.  In 

unsupervised settings, the lack of reliable anomaly labels further increases modeling difficulty. This 

situation calls  for a unified modeling paradigm  that can automatically  learn  intrinsic operational 

patterns while remaining sensitive to deviations. 

From  a  system‐level  perspective,  large‐scale  infrastructures  can  be  abstracted  as  complex 

networks composed of functional components and their dependency relationships. Anomalies are 

rarely  isolated  events. They  are  often  embedded  as  structural  changes  or  temporal  shifts within 

dependency graphs. Modeling individual components solely along the time dimension is inadequate 

for  identifying anomalies caused by cross‐component  interactions[6]. Focusing only on  structural 

relations while ignoring temporal evolution also fails to reflect how system states accumulate and 

change over time. Consequently, jointly modeling structural dependencies and temporal dynamics 

is essential for improving the accuracy and anticipatory capability of anomaly detection. 

Against  this  backdrop,  developing  an  unsupervised  anomaly  detection  approach  that 

simultaneously  captures  dependency  graph  structure  and  temporal  dynamics  is  of  significant 

theoretical and practical value. Such methods can overcome the  limitations of threshold and rule‐

driven techniques by enabling adaptive modeling of complex system behaviors and more expressive 

risk representations. Moreover, early detection and precise localization of anomalous behaviors can 

effectively  reduce  the  impact  of  fault  propagation  and  improve  infrastructure  reliability  and 

operational efficiency[7]. As system scale continues to expand and operational environments grow 

increasingly complex, exploring anomaly detection frameworks that integrate structure awareness 

with  temporal modeling  remains a  crucial direction  for  intelligent operations and highly  reliable 

system construction. 

II. Background 

Anomaly detection for cloud and microservice environments has been extensively studied, with 

surveys emphasizing the diversity of anomaly types, the heterogeneity of observability signals, and 

the difficulty of achieving  reliable detection under evolving workloads. Early  systematic  reviews 

summarize  common  modeling  paradigms  and  deployment  constraints  in  cloud  environments, 

highlighting  that  practical methods must  balance  detection  accuracy with  scalability  and  noise 

tolerance [8]. More recent surveys further stress that modern service‐based systems require unified 

analysis  across  metrics,  logs,  and  traces,  and  that  dependency‐aware  modeling  is  crucial  for 

identifying  fault  propagation  and  supporting  root  cause  localization  [9].  In  addition  to  survey 

literature, recent applied work continues to reflect the breadth of anomaly detection designs in cloud 

settings,  reinforcing  the  need  for  robust  representation  learning  to  handle distribution  shift  and 

complex operational patterns [10]. 

Methodologically,  deep  sequence  modeling  provides  a  strong  basis  for  learning  normal 

temporal behavior in an unsupervised or weakly supervised manner. Attention‐augmented recurrent 

models demonstrate that selectively focusing on informative time segments can improve anomaly 

sensitivity while mitigating noise effects [11], and attention‐based temporal modeling has also been 

used  to  capture  long‐range dependencies  for  risk‐related prediction  in  complex  time  series  [12]. 

Beyond  purely  temporal  encoders,  recent  work  introduces  contrastive  learning  to  strengthen 
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dependency  representations  by  pulling  consistent  patterns  together  and  separating  abnormal 

behaviors  in embedding space, which can  improve robustness under changing system conditions 

[13]. These directions motivate combining temporal self‐attention with reconstruction‐style objectives 

to learn stable normality manifolds for anomaly scoring. 

Another important trend is incorporating structure and explicit dependencies into the detection 

pipeline. Dynamic  graph modeling  and  relational  representation  learning  have  been  adopted  to 

encode  interactions  among  entities  and  to  improve  robustness  under  evolving  dependencies, 

illustrating how graph‐based  inductive bias can complement  temporal modeling when anomalies 

propagate across components [14]. Causal graph modeling and causally constrained representation 

learning  further  emphasize  suppressing  spurious  correlations  and  improving  explanation 

faithfulness  through  structured  constraints,  providing  transferable  methodology  for  making 

anomaly decisions more interpretable and traceable [15]. Complementarily, meta‐learning has been 

explored to handle sample scarcity and evolving patterns, offering principles for rapid adaptation 

when anomaly characteristics shift over time [16]. Together, these works support the perspective that 

effective  anomaly  detection  in  complex  infrastructures  benefits  from  jointly modeling  temporal 

evolution, dependency structure, and robustness‐oriented representation learning. 

Finally,  recent  advances  in  large  language model  ecosystems  provide  additional  tools  for 

reliability,  interpretability,  and  privacy‐aware  deployment.  Knowledge‐augmented  agent 

frameworks  highlight  mechanisms  for  integrating  external  structured  knowledge  into  decision 

pipelines  to  improve  explainability  and  controllability  [17].  Risk‐aware  and  uncertainty‐aware 

summarization focuses on compressing evolving contexts while preserving critical signals, which can 

support  efficient  state  summarization and  alert  reporting  in monitoring  systems  [18]. Parameter‐

efficient fine‐tuning methods, including privacy‐preserving adaptation, demonstrate how to update 

large models with constrained parameter changes and privacy guarantees, offering a methodological 

blueprint for adapting components in production settings without full retraining or excessive data 

exposure  [19].  Related  studies  on  collaborative  evolution  in  complex multi‐component  systems 

further emphasize coordinated adaptation and  robustness as conditions evolve  [20], while multi‐

scale LoRA fine‐tuning  illustrates  lightweight adaptation across different granularities that can be 

useful when tuning auxiliary models for monitoring and diagnosis tasks [21]. 

III. Method 

In  complex  infrastructure  environments,  a  system  can  be  abstracted  as  a  dynamic  graph 

structure composed of multiple components and their dependencies. Let the systemʹs dependencies 

at  time  𝑡   be  represented  as  a directed  graph  𝐺௧ ൌ ሺ𝑉,𝐸௧ሻ , where  𝑉   represents  the  set  of  nodes 
corresponding  to  service  or  resource  components  in  the  system,  and  𝐸௧   represents  the  set  of 
dependency edges at time  𝑡. Each node  𝑣௜ ∈ 𝑉  is associated with a set of multi‐source observable 

signals,  represented  as  a  time  series  𝑥௜ ൌ ሼ𝑥௜
1, 𝑥௜

2, . . . , 𝑥௜
்ሽ .  Through  this  graph‐sequence  joint 

representation, the systemʹs structural dependencies and temporal evolution are modeled in a unified 

manner, providing  a  structured  input  foundation  for  subsequent  anomaly modeling. This  article 

presents the overall model architecture diagram, as shown in Figure 1. 

 

Figure 1. Overall model architecture diagram. 
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To  effectively  capture  the  dependencies  and  structural  context  among  nodes,  this  study 

introduces and implements a graph structure modeling mechanism at each time step, which performs 

neighborhood  aggregation  on  node  features  to  encode  local  and  global  relationships.  This 

aggregation process draws on the temporal‐aware graph neural architecture proposed by Zhang et 

al.  [22],  which  demonstrates  the  advantages  of  dynamically  integrating  structural  context  for 

comprehensive anomaly detection  in microservices. Building on  this,  the model  further  leverages 

spatiotemporal  aggregation  strategies  introduced  by  Qiu  et  al.  [23]  to  jointly  represent  spatial 

dependencies  and  temporal  correlations  within  distributed  backend  systems.  To  enhance 

adaptability  in  large‐scale  and  dynamic  environments,  the  neighborhood  aggregation  scheme 

incorporates  collaborative  feature  propagation mechanisms  inspired  by  Yao,  Liu,  and Dai  [24], 

ensuring robust representation even under shifting topology and heterogeneous data sources. The 

formal aggregation operation is defined as follows. For node  𝑣௜, its structure‐aware representation is 

obtained by weighted aggregation of neighboring node information, formally represented as: 

ℎ௜
௧ ൌ 𝜎ሺ∑ 𝛼௜௝𝑊௚𝑥௝

௧
௝∈ேሺ௜ሻ ሻ                         (1) 

Where  𝑁ሺ𝑖ሻ  represents  the set of neighbors of node  𝑣௜, 𝑊௚  is a  learnable  linear mapping matrix, 

and  𝜎ሺ∙ሻ  represents a non‐linear activation function. The weight coefficient E is used to characterize 

the strength of the dependency between nodes, and it is defined as: 

𝛼௜௝ ൌ
௘௫௣ሺ௔೅ሾ௫೔

೟||௫ೕ
೟ሿሻ

∑ ௘௫௣ሺ௔೅ሾ௫೔
೟||௫ೖ

೟ ሿሻೖ∈ಿሺ೔ሻ
                            (2) 

Here,  𝑎  represents a learnable parameter, and  ||  represents a vector concatenation operation. 
Through this structural modeling process, node representations can explicitly incorporate contextual 

information from the dependency graph. 

After obtaining the structurally enhanced node representations, to further capture the evolution 

of  the  systemʹs  operating  state  over  time,  a  time  modeling  module  based  on  a  self‐attention 

mechanism is introduced to model the dynamic behavior of nodes in the time dimension. For node 

𝑣௜ ,  its  time  series  representation  is  denoted  as  𝐻௜ ൌ ሾℎ௜
1, . . , ℎ௜

்ሿ .  The  time  attention  mechanism 

calculates the hidden state in the following form: 

𝑍௜ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ
ொ೔௄೔

೅

√ௗ
ሻ𝑉௜                              (3) 

Where  𝑄௜ ,𝑉௜ ,𝐾௜   is  the  learnable parameter matrix, and  𝑑   represents  the  feature dimension. This 

process  can  adaptively  focus  on  the  importance  of  different  time  segments  to  the  current  state, 

thereby modeling long‐term time dependencies and potential anomalous evolution trends. 

In unsupervised anomaly detection scenarios, the model  identifies deviations by  learning the 

normal operating patterns of  the system. To  this end, a reconstruction‐based objective  function  is 

introduced to constrain the joint structural and temporal representations. The reconstruction error of 

the node  𝑣௜  at time  𝑡  is defined as: 

𝑒௜
௧ ൌ ||𝑥௜

௧ െ 𝑥ො௜
௧||ଶ

ଶ                                 (4) 

Where  𝑥ො௜
௧  represents the modelʹs reconstruction result of the original input. The overall optimization 

objective function is defined as: 

𝐿 ൌ ∑ ∑ 𝑒௜
௧

௧ୀଵ௜∈௏                                  (5) 

This  objective  prompts  the model  to  fully  characterize  the  systemʹs  normal  structure  and 

temporal patterns during training. When significant shifts occur in the systemʹs operational state in 

terms of structural relationships or temporal behavior, the corresponding reconstruction error will 

change, thus providing a unified and interpretable metric basis for anomaly detection. 

IV. Experimental Results 

A. Dataset 

This study employs the Server Machine Dataset, SMD, as the experimental dataset. SMD is an 

open‐source  multivariate  time  series  dataset  designed  for  anomaly  detection  in  cloud  server 
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monitoring scenarios. It captures state fluctuations and anomalous segments observed during long‐

term operation of real servers. The dataset effectively reflects metric‐centered observability signals in 

large‐scale  infrastructures. Due  to  its public availability and  strong  reproducibility, SMD  is well‐

suited  as  a  unified  evaluation  benchmark  for  unsupervised  anomaly  detection.  It  is  also  highly 

aligned with the emphasis on temporal dynamic modeling in this work. 

The dataset consists of monitoring metric sequences collected from multiple servers. Each server 

corresponds  to a multivariate  time series with dozens of dimensions. These dimensions  typically 

include statistics related to CPU, memory, disk, and network usage. Point‐wise anomaly annotations 

are provided  for evaluation purposes. This design supports a consistent setting where  training  is 

unsupervised, and evaluation is supervised. The data are organized at the machine level and include 

separate  training and  testing  splits. The  training data are mainly used  to  learn normal operating 

patterns. The testing data contain more complex fluctuations and anomalous intervals, which allow 

assessment of model sensitivity and robustness to deviations. 

To better support the joint modeling paradigm of dependency graphs and temporal dynamics, 

each server  is  treated as a node  in a graph. The multivariate metric sequences within a  temporal 

window  are  used  as  node  features.  Dependency  edges  are  constructed  based  on  statistical 

dependence or correlation across machines. Edge weights can be updated using sliding windows to 

form a dynamic dependency graph. In this way, the model can exploit graph structure to capture 

cross‐node interaction patterns. It can also leverage temporal modeling to describe the evolution of 

both local and global system states. This design enables full support of the proposed methodology 

on a standardized and open dataset. 

B. Experimental Setup 

An unsupervised training paradigm is adopted for anomaly detection modeling in this study. 

During training, only normal sequences from the training set are used, and no anomaly labels are 

introduced. The model  input consists of multivariate monitoring sequences segmented by sliding 

windows, together with a dependency graph constructed from statistical dependencies as a structural 

prior. At each time step, a graph encoder integrates neighborhood information to obtain structure‐

enhanced node  representations. A  temporal attention module  is  then applied  to  learn  long‐range 

temporal dependencies. The  reconstruction network outputs  reconstructed observations,  and  the 

reconstruction  error  is  used  as  the  training  objective  for  end‐to‐end  optimization.  The AdamW 

optimizer is employed with a learning rate of 0.0001 and a batch size of 64. The window length is set 

to 100, the hidden dimension to 128, the weight decay to 0.01, and the dropout rate to 0.1. An early 

stopping  strategy  is  applied  when  the  validation  reconstruction  loss  no  longer  decreases..  A 

thresholding strategy is then used to map anomaly scores to anomaly decisions. This process enables 

the detection of deviations in operating states without relying on anomaly annotations. 

C. Experimental Results 

This paper first conducts a comparative experiment, and the experimental results are shown in 

Table 1. 

Table 1. Comparative experimental results. 

Model Acc(%) Precision(%) Recall(%) F1-Score(%) 

Glad[25] 47.3 44.8 42.1 43.4 

Mambaad[26] 51.6 49.7 46.8 48.2 

Dinomaly[27] 53.9 52.4 49.1 50.7 

Geo-Hgan[28] 55.8 54.1 52.7 53.4 

Autouad[29] 56.7 55.2 53.0 54.1 

ADS-Bpois[30] 58.4 56.8 55.1 55.9 
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Ours 62.1 61.0 60.3 60.6 

Baseline methods  show  incremental  but  uneven  gains  on  complex  infrastructure  anomaly 

detection,  reflecting  the  limits  of  single‐perspective  modeling  for  multifactor  disturbances  and 

cascading  failures.  In  contrast,  the  proposed method  leads  across  all metrics,  achieving  a more 

balanced precision–recall trade‐off and stable discrimination by jointly modeling dependency graphs 

and temporal dynamics—aligning with how anomalies propagate and evolve in real systems. This 

yields more  separable  and  threshold‐robust  anomaly  scores, which  is  critical  for  unsupervised 

deployment and early warning. Finally, since representation capacity affects  the ability  to encode 

structure and  long‐range dynamics, we assess sensitivity to hidden dimension with other settings 

fixed; results are shown in Figure 2. 

 

Figure 2. The impact of hidden dimensions on experimental results. 

The subplots show that hidden dimension directly controls representational capacity and thus 

discrimination and class separation. Small dimensions over‐compress structure and temporal cues, 

weakening cross‐component interactions and blurring normal‐behavior boundaries, which reduces 

sensitivity  to  subtle  anomalies. A moderate  dimension  yields  the  best  balance,  allowing  graph 

structure and temporal attention to jointly encode anomaly propagation and drift while suppressing 

noise,  producing  more  stable  unsupervised  representations.  Larger  dimensions  offer  sharper 

discrimination for some patterns but increase flexibility and noise sensitivity, leading to overfitting 

and degraded coverage. Overall, hidden dimension is a critical hyperparameter requiring a trade‐off 

between expressiveness and robustness; Figure 3 further examines the effect of time‐window length. 

 

Figure 3. The effect of time window length on experimental results. 

The  subplots  show  that  temporal window  length  strongly  shapes  anomaly  detection:  short 

windows  focus on  local fluctuations and miss delayed cross‐component effects, making decisions 
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sensitive to noise, while moderate windows provide sufficient context for graph‐based dependencies 

and temporal attention to capture anomaly propagation and cumulative drift. However, overly long 

windows  introduce misaligned  trends,  workload  cycles,  and  irrelevant  fluctuations  that  dilute 

representations or  cause over‐smoothing under unsupervised  reconstruction,  creating  a  trade‐off 

between coverage and precision. These results indicate that window length must be carefully aligned 

with dependency graph modeling—large enough  to capture anomaly evolution paths, but not so 

large that noise dominates—to ensure robust early warning and reliability. 

V. Conclusions 

This  work  addresses  the  demand  for  unsupervised  anomaly  detection  in  large‐scale  and 

complex  infrastructures.  It  proposes  a  unified modeling  framework  that  integrates  dependency 

graph  structure with  temporal  dynamics  to  better  reflect  coupled  propagation  and  evolution  of 

anomalies in real systems. Structural context and temporal dependencies are jointly exploited at the 

representation level. This enables the model to learn clearer boundaries of normal behavior without 

anomaly  labels  and  to map  deviations  into  interpretable  anomaly  scores.  Comparative  results 

demonstrate  overall  advantages  across multiple  evaluation metrics.  These  findings  indicate  that 

coordinated  design  of  graph  structure  awareness  and  long‐range  temporal modeling  improves 

coverage of complex failure patterns and enhances decision stability. The framework provides a more 

transferable  technical  path  for  reliable  detection  in  practical  operations.  From  an  application 

perspective, the proposed approach has direct relevance to cloud platforms, microservice systems, 

data  center operations, and  critical  information  infrastructures. Earlier and more  robust anomaly 

identification  can  shorten  fault  discovery  and  response  chains.  It  can  reduce  the  cost  of  risk 

propagation caused by downtime and cascading failures. Service availability and resource utilization 

can  be  improved.  Joint  structural  and  temporal  representations  align  naturally  with  system 

dependency relations as operational facts. They provide more reliable signals for alert aggregation, 

impact assessment, and troubleshooting decisions. In deployment, this unsupervised approach also 

offers  low  labeling cost and  fast adaptation.  It supports  long‐term usability  in environments with 

multiple  services,  regions,  and  frequent  version  iterations.  This  contributes  to  the  evolution  of 

intelligent operations toward higher automation and reliability. 

Looking  ahead,  several  directions  remain  to  further  enhance  generality  and  engineering 

readiness.  First,  unified  representation  learning  can  be  extended  to more  complex  observability 

modalities. Metrics,  logs,  and  traces  can  be  aligned more  closely within  a  single  framework  to 

strengthen consistent modeling of multi‐source anomaly cues. Second, stronger online updating and 

drift  adaptation mechanisms  can  be  incorporated.  This  helps maintain  a  stable  normal  pattern 

characterization under changing business policies, elastic scaling, and system upgrades. With these 

extensions,  the proposed  joint  structural  and  temporal unsupervised detection paradigm  can  be 

applied to a broader range of critical infrastructures and continue to enhance system resilience and 

operational reliability. 
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