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Abstract 

Non-stationary time-series data poses significant challenges for anomaly detection systems due to 

evolving patterns and distribution shifts that render traditional static models ineffective. This paper 

presents a novel continual learning framework that integrates dynamic distribution monitoring 

mechanisms to enable adaptive anomaly detection in non-stationary environments. The proposed 

framework employs a dual-module architecture consisting of a distribution drift detector and an 

adaptive learning component. The distribution drift detector utilizes statistical hypothesis testing to 

identify temporal shifts in data distributions, while the adaptive learning module employs rehearsal-

based continual learning strategies with dynamic memory management to maintain model 

performance across evolving patterns. We introduce a hybrid loss function that balances stability and 

plasticity, preventing catastrophic forgetting while enabling rapid adaptation to new distributions. 

Experimental results demonstrate an average F1-score improvement of 11.3% over the best-

performing baseline, highlighting the robustness and adaptability of the proposed framework under 

non-stationary conditions while maintaining computational efficiency suitable for real-time 

applications. 

Keywords: anomaly detection; non-stationary time-series; continual learning; distribution shift; 

concept drift; adaptive learning; dynamic monitoring 

 

I. Introduction 

Time-series anomaly detection has emerged as a critical component in numerous domains, 

including industrial monitoring, cybersecurity, financial fraud detection, and healthcare systems [1], 

Traditional anomaly detection approaches typically assume that time-series data follow a stationary 

distribution in which statistical properties remain constant over time. However, real-world systems 

frequently exhibit non-stationary behavior characterized by temporal distribution shifts, evolving 

patterns, and concept drift. These dynamic changes can severely degrade the performance of static 

detection models, leading to increased false alarm rates and reduced sensitivity to genuine anomalies. 

Detecting anomalies in non-stationary environments has attracted considerable attention. Deep-

learning models-notably autoencoders, recurrent neural networks, and transformers- have shown a 

strong ability to capture complex temporal dependencies in time-series data [2]. Despite these 

advances, many methods fail when distribution shifts violate the i.i.d. assumption. If incoming data 

statistics deviate substantially from the training distribution, model performance often degrades 

rapidly, requiring frequent retraining or manual intervention. 

Continual learning, also known as lifelong learning, offers a promising paradigm for addressing 

non-stationarity by enabling models to incrementally acquire new knowledge while preserving 
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previously learned information [3]. Recent work has begun exploring the intersection of continual 

learning and anomaly detection, particularly in the context of concept drift adaptation [4]. However, 

existing approaches often lack explicit mechanisms for detecting and characterizing distribution 

shifts, relying instead on passive adaptation strategies that may respond too slowly to abrupt changes 

or too aggressively to benign fluctuations. 

This paper introduces a comprehensive framework for adaptive anomaly detection in non-

stationary time series that explicitly incorporates distribution monitoring capabilities. Our approach 

makes several key contributions. First, we develop a distribution drift detection module based on 

statistical hypothesis testing that continuously monitors incoming data streams for significant 

distributional changes. This module distinguishes between virtual drift, which affects input 

distributions without impacting decision boundaries, and actual drift, which necessitates model 

adaptation [5]. Second, we propose an adaptive learning architecture that employs rehearsal-based 

continual learning with dynamic memory management, allowing the system to selectively retain 

representative samples from historical distributions while efficiently incorporating new patterns. 

Third, we introduce a hybrid loss function that explicitly balances the competing objectives of 

stability and plasticity, preventing catastrophic forgetting while enabling rapid adaptation to 

evolving data distributions. 

Our framework addresses several limitations of existing approaches. Unlike methods that treat 

all distributional changes uniformly, our system adaptively modulates its learning rate and memory 

update strategy based on the detected severity and type of drift. Furthermore, our approach 

maintains computational efficiency through careful design choices, making it suitable for deployment 

in resource-constrained environments requiring real-time processing. We validate our framework 

through extensive experiments on multiple benchmark datasets representing diverse application 

domains, demonstrating consistent improvements over state-of-the-art baselines in terms of 

detection accuracy, adaptation speed, and computational efficiency. 

II. Related Work 

Time-series Non-stationary anomaly detection is commonly addressed by combining explicit 

drift monitoring with continual adaptation. Adaptive windowing provides an online hypothesis-

testing mechanism to detect distribution changes and trigger updates under time-varying streams 

[6]. Recent continual learning under concept drift emphasizes adaptive memory realignment so 

rehearsal buffers remain representative as patterns evolve, reducing catastrophic forgetting while 

preserving fast adaptation [7], and adaptive-learning anomaly detection frameworks similarly couple 

drift-aware updating with practical online constraints [8]. For temporal representation learning, 

classical sequence encoders such as LSTM remain a foundational choice for capturing long-range 

dependencies [9], while attention-enhanced LSTM variants improve selectivity by focusing on salient 

segments for more stable detection signals [10]. Alternative backbones such as temporal convolution 

with attention provide efficient multi-scale temporal modeling [11], and Transformer-style modeling 

is often paired with change-point detection to explicitly capture regime transitions that coincide with 

drift events [12]. Attention-based sequence modeling more broadly continues to be used to extract 

robust temporal dependencies from complex time series [13]. 

To further improve robustness under evolving patterns, a range of controlled adaptation and 

structured modeling techniques have been explored. System-level evolution and coordination 

mechanisms provide general strategies for maintaining performance as components and conditions 

change [14], while uncertainty- and risk-aware summarization offers a principled way to compress 

evolving context without discarding risk-relevant information, which is useful when maintaining 

stable memory/replay or state summaries over time [15]. Explainable representation learning 

encourages feature spaces that support more transparent decisions and updates [16]. Graph-based 

modeling introduces relational inductive bias that can stabilize representations when signals are 

coupled across variables or entities [17]. Parameter-efficient adaptation methods such as modular 

adapters with structural priors enable constrained updates that better balance stability and plasticity 
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[18], and multi-scale LoRA provides lightweight adaptation across granularities for rapid post-drift 

adjustment [19]. Information-constrained retrieval complements these ideas by explicitly controlling 

what external evidence is incorporated into the learning loop, reducing noise amplification during 

adaptation [20]. Finally, meta-learning targets rapid adaptation under scarcity and evolving patterns, 

offering transferable principles for fast recovery after drift is detected [21]. 

III. Methodology 

A. Problem Formulation 

Consider a continuous time-series data stream 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑡 , ⋯ } where 𝑥𝑡 ∈ ℝ𝑑 represents 

a d-dimensional observation at time t. Our objective is to detect anomalies in this stream while 

adapting to distribution shifts. We define the anomaly detection task as learning a scoring function 

𝑓𝜃: ℝ𝑑 → ℝ parameterized by 𝜃, where higher scores indicate greater anomaly likelihood. 

In non-stationary environments, the joint distribution 𝑃𝑡(𝑋, 𝑌)  evolves over time, where 𝑌 ∈

{0,1} denotes normal or anomalous labels. Following the taxonomy of distribution shifts [13], we 

distinguish between two types of drift: virtual drift affecting 𝑃(𝑋) and actual drift affecting 𝑃(𝑌|𝑋). 

Our framework focuses on detecting and adapting to actual drift, which directly impacts detection 

performance. 

B. Distribution Drift Detection Module 

The drift detection module continuously monitors the incoming data stream to identify material 

distribution shifts that can invalidate the assumptions of a static anomaly detector. We employ a two-

phase strategy that unifies (i) statistical hypothesis testing for shift discovery and (ii) performance 

monitoring for shift qualification, so that adaptation is triggered only when the detected drift is both 

statistically credible and operationally consequential. 

In the first phase, we perform hypothesis testing between a reference window and an incoming 

window to flag distributional change points. This choice is motivated by the practical reality that 

upstream pipeline dynamics can reshape the observed data distribution; Gao et al. [22] highlight how 

heterogeneous ETL environments and scheduling changes can alter downstream data characteristics, 

making explicit drift monitoring a necessary control signal rather than an optional diagnostic. In the 

second phase, we monitor detector behavior—such as error distribution shifts, alert rate instability, 

and confidence degradation—to decide whether the drift meaningfully affects decision quality. This 

step is designed to reduce unnecessary model updates and to strengthen traceability; it aligns with 

Lai et al. [23] in emphasizing explainable, causally grounded assessment where changes are linked 

to interpretable evidence rather than treated as opaque triggers. Finally, because the stream may 

contain heterogeneous, high-dimensional signals, we monitor drift on learned representations rather 

than raw inputs; this follows the representation-centric modeling rationale used by Xie and Chang 

[24] for heterogeneous record-based sequences, where transformer-derived features provide a more 

stable basis for downstream risk identification and monitoring. The resulting two-phase drift decision 

rule and the adaptation trigger conditions are formalized as follows: 

Statistical Distribution Monitoring: We maintain a sliding reference window 𝑊𝑟𝑒𝑓  containing 

recent samples from the current distribution and a test window 𝑊𝑡𝑒𝑠𝑡 for incoming data. To detect 

distribution shifts, we apply the Kolmogorov-Smirnov (KS) test, a non-parametric method that 

compares empirical cumulative distribution functions without assumptions about underlying 

distributions. 

For each dimension 𝑖 of the input space, we compute the KS statistic: 

𝐷𝐾𝑆
(𝑖)

= sup
𝑥

|𝐹𝑟𝑒𝑓
(𝑖) (𝑥) − 𝐹𝑡𝑒𝑠𝑡

(𝑖) (𝑥)|  

Where 𝐹𝑟𝑒𝑓
(𝑖)

  and 𝐹𝑡𝑒𝑠𝑡
(𝑖)

  are the empirical cumulative distribution functions for dimension 𝑖  in the 

reference and test windows, respectively. The overall drift score is computed as: 
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𝐷𝑑𝑟𝑖𝑓𝑡 =
1

𝑑
∑ 𝐷𝐾𝑆

(𝑖)

𝑑

𝑖=1

 

A distribution shift is detected when D𝑑𝑟𝑖𝑓𝑡 exceeds a predefined threshold τ𝑑𝑟𝑖𝑓𝑡 typically set 

using statistical significance levels. 

Performance-Based Drift Detection: To complement statistical monitoring, we track the model's 

detection performance using an exponentially weighted moving average (EWMA) of prediction 

confidence scores: 

𝐶𝑡 = α ⋅ 𝑐𝑡 + (1 − α) ⋅ 𝐶𝑡−1 

where 𝑐𝑡  represents the prediction confidence at time 𝑡  and 𝛼  is the smoothing parameter. A 

significant decrease in 𝐶𝑡 indicates potential concept drift requiring model adaptation. We detect 

performance drift when: 

Δ𝐶 = |𝐶𝑡 − 𝐶𝑡−𝑤| > τ𝑝𝑒𝑟𝑓  

where 𝑤 is the monitoring window size and τ𝑝𝑒𝑟𝑓 is the performance drift threshold. 

C. Adaptive Continual Learning Module 

Upon detecting distribution drift, the adaptive learning module updates the anomaly detection 

model while preserving knowledge of previous distributions. Our approach is built upon a deep 

autoencoder architecture enhanced with attention mechanisms for temporal feature extraction. 

Base Architecture: The core detection model consists of an encoder-decoder structure with 

LSTM layers augmented by attention mechanisms. The encoder maps input sequences to a latent 

representation: 

ℎ𝑡 = LSTM𝑒𝑛𝑐(𝑥𝑡 , ℎ𝑡−1) 

𝑧𝑡 = Attention(ℎ1, … , ℎ𝑇) 

The decoder reconstructs the input from the latent representation: 

𝑥𝑡̂ = LSTM𝑑𝑒𝑐(𝑧𝑡 , 𝑠𝑡−1) 

The anomaly score is computed based on reconstruction error and latent space deviation: 

𝐴(𝑥𝑡) = λ1|𝑥𝑡̂ − 𝑥𝑡|2 + λ2|𝑧𝑡 − μ𝑧|2 

where 𝜇𝑧 represents the mean latent representation of normal samples, and 𝜆1, 𝜆2 are weighting 

coefficients. 

Continual Learning Strategy: To enable continual adaptation without catastrophic forgetting, 

we employ a rehearsal-based approach with dynamic memory management. The memory buffer 𝑀 

stores representative samples from encountered distributions. During training on a new data batch 

𝐵𝑛𝑒𝑤 , we combine it with samples from memory: 

ℬ𝓉𝓇𝒶𝒾𝓃 = ℬ𝓃ℯ𝓌 ∪ Sample(ℳ, 𝑘) 

where 𝑘 is the number of samples retrieved from memory. The model is updated by minimizing a 

hybrid loss function: 

ℒ𝓉ℴ𝓉𝒶ℓ = ℒ𝓇ℯ𝒸ℴ𝓃 + β1ℒ𝓇ℯℊ
+ β2ℒ𝒸ℴ𝓃𝓉𝓇𝒶𝓈𝓉

 

The reconstruction loss ensures accurate modeling of normal patterns: 

ℒ𝓇ℯ𝒸ℴ𝓃 =
1

|ℬ𝓉𝓇𝒶𝒾𝓃|
∑ |𝑥

𝑥∈ℬ𝓉𝓇𝒶𝒾𝓃

− 𝑥̂|2
2 

The regularization loss prevents drastic parameter changes: 

ℒ𝓇ℯℊ = ∑ |θ𝑗

𝑗

− θ𝑗
𝑜𝑙𝑑|2

2 
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Where 𝜃𝑜𝑙𝑑  represents parameters before the current update. The contrastive loss maintains 

separation between normal and anomalous representations in latent space: 

ℒ𝒸ℴ𝓃𝓉𝓇𝒶𝓈𝓉 = −log
exp(sim(𝑧𝑖 , 𝑧𝑖

+)/τ)

∑ exp(sim(𝑧𝑖 , 𝑧𝑗)/τ)𝑗

 

where sim(⋅,⋅)  denotes cosine similarity, 𝒛𝒊
+  is a positive sample, and 𝜏  is the temperature 

parameter. 

D. Dynamic Memory Management 

Effective memory management is critical for balancing adaptation speed with knowledge 

retention. We propose an adaptive memory update strategy that responds to detected drift severity. 

Drift-Aware Memory Update: Upon detecting distribution drift, we classify its severity based 

on 𝐷𝑑𝑟𝑖𝑓𝑡  magnitude. For mild drift (𝐷𝑑𝑟𝑖𝑓𝑡 < 𝜏ℎ𝑖𝑔ℎ) , we gradually replace outdated samples. For 

severe drift (𝐷𝑑𝑟𝑖𝑓𝑡 ≥ 𝜏ℎ𝑖𝑔ℎ), we perform aggressive memory realignment by removing samples with 

high reconstruction error under the new distribution. 

The memory update probability for sample 𝑥𝑚 ∈ 𝑀 is computed as: 

𝑃𝑟𝑒𝑚𝑜𝑣𝑒(𝑥𝑚) = σ (γ ⋅
|𝑥𝑚 − 𝑥𝑚̂|2 − μ𝑒𝑟𝑟

σ𝑒𝑟𝑟

) 

where 𝜎  is the sigmoid function, 𝑢𝑒𝑟𝑟   and 𝜎𝑒𝑟𝑟   are the mean and standard deviation of 

reconstruction errors in current memory, and 𝛾 controls the removal aggressiveness. 

Diverse Sample Selection: When adding new samples to memory, we employ a diversity-based 

selection criterion to ensure comprehensive coverage of the current distribution. We use k-means 

clustering in the latent space and select samples closest to cluster centroids: 

𝒮𝓃ℯ𝓌 = {arg min
𝑥∈𝒞𝒿

|𝑧𝑥 − 𝑐𝑗|2 ∣ 𝑗 = 1, … , 𝐾} 

where 𝐶𝑗 represents the j-th, 𝑐𝐽 is its centroid, and 𝐾 is the number of clusters. 

E. Adaptive Learning Rate Scheduling 

To balance stability and plasticity, we dynamically adjust the learning rate based on drift 

severity and model confidence. The adaptive learning rate is computed as: 

η𝑡 = η𝑏𝑎𝑠𝑒 ⋅ (1 + ω ⋅ 𝐷𝑑𝑟𝑖𝑓𝑡) ⋅ exp(−ρ ⋅ 𝐶𝑡) 

Where η𝑏𝑎𝑠𝑒  is the base learning rate, 𝜔 controls drift sensitivity, and 𝜌 modulates the influence of 

model confidence. This formulation increases learning rate when drift is detected while decreasing it 

when the model demonstrates high confidence, preventing unnecessary updates to stable patterns. 

IV. Experiments 

A. Datasets 

We evaluate our framework on four publicly available benchmark datasets representing diverse 

application domains and drift characteristics: SWaT (Secure Water Treatment): A dataset from a 

water treatment testbed containing 11 days of continuous operation with 51 sensors and actuators. 

The dataset includes both normal operations and various cyber-physical attack scenarios, 

representing gradual and abrupt distribution shifts [25]. With 946,722 samples and an anomaly ratio 

of 11.98%, SWaT provides a realistic testbed for industrial monitoring applications. SMAP (Soil 

Moisture Active Passive): A real-world dataset from NASA containing telemetry data from spacecraft 

sensors. It includes 25 dimensions with 135,183 samples and a 13.13% anomaly ratio, exhibiting 

natural temporal evolution in sensor readings [26]. The dataset demonstrates gradual drift patterns 

typical of space systems. MSL (Mars Science Laboratory): Another spacecraft dataset from NASA 

with 55 channels monitoring the Mars rover systems over 132,801 samples. With a 10.72% anomaly 
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ratio, this dataset demonstrates long-term non-stationary behavior with seasonal variations, making 

it ideal for evaluating adaptation to slow, continuous drift. SMD (Server Machine Dataset): A 5-week 

dataset from a large internet company containing 38 dimensions from 28 server machines, totaling 

708,405 samples. With only a 4.16% anomaly ratio, it exhibits concept drift due to varying workloads 

and operational conditions [27], representing mixed drift patterns common in cloud computing 

environments. Table I summarizes the key characteristics of these datasets, including their 

dimensionality, length, anomaly ratio, and drift types. 

Table I. Dataset Characteristics. 

Dataset Dimensions Length Anomaly Ratio(%) Drift Type 

SWaT 51 946,722 11.98 Abrupt 

SMAP 25 135,183 13.13 Gradual 

MSL 55 132,801 10.72 Seasonal 

SMD 38 708,405 4.16 Mixed 

B. Results and Analysis 

Table II presents the comprehensive performance comparison across all datasets. Our proposed 

framework consistently outperforms baseline methods, achieving the highest average F1-score of 

0.847 across datasets, representing a 11.3% improvement over the best baseline 

(AnomalyTransformer at 0.734). 

Table II. Performance Comparison Across Methods and Datasets (F1-score). 

Method SWaT SMAP MSL SMD Average 

LSTM-VAE 0.673 0.689 0.671 0.623 0.664 

OmniAnomaly 0.721 0.712 0.694 0.687 0.704 

USAD 0.748 0.723 0.715 0.701 0.722 

TranAD 0.812 0.745 0.732 0.728 0.754 

AnomalyTransformer 0.798 0.762 0.749 0.734 0.761 

RADM 0.735 0.698 0.687 0.665 0.696 

Online-LSTM 0.689 0.671 0.658 0.642 0.665 

EWC-AE 0.776 0.731 0.724 0.715 0.737 

Ours 0.891 0.832 0.819 0.846 0.847 

On the SWaT dataset, our method achieves an F1-score of 0.891, significantly outperforming the 

second-best method (TranAD at 0.812). The SMAP and MSL datasets show similar trends, with our 

framework achieving F1-scores of 0.832 and 0.819, respectively. The SMD dataset presents the most 

challenging scenario due to its high-dimensional feature space and frequent concept drift, yet our 

framework maintains robust performance with an F1-score of 0.846. 

Figure 1 visualizes the F1-score comparison across all methods and datasets, clearly 

demonstrating the consistent superiority of our approach. 
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Figure 1. Performance comparison across different methods and datasets. 

To evaluate adaptation capabilities, we analyze performance across different drift severities. 

Figure 2 shows F1-score degradation as drift magnitude increases. Our framework maintains stable 

performance across mild to severe drift conditions, with only a 7.2% F1-score decrease from no drift 

to severe drift scenarios. In contrast, static methods like LSTM-VAE and USAD experience 31.4% and 

28.7% degradation, respectively. 

 

Figure 2. Performance degradation under different drift severities. 

The explicit drift detection mechanism proves crucial. When comparing against EWC-AE, which 

employs continual learning without drift detection, our method shows a 12.8% better F1-score under 

moderate drift conditions. Table III details drift detection accuracy, showing our KS-test-based 

approach achieves 94.3% accuracy in identifying distribution shifts with minimal false positives (3.2% 

false positive rate). 

Table III. Drift detection accuracy analysis. 

Metric 
Statistical 

Only 

Performance 

Only 

Dual Monitoring 

(Ours) 

Detection Accuracy (%) 89.7 86.2 94.3 

False Positive Rate (%) 5.8 8.1 3.2 

False Negative Rate (%) 10.3 13.8 5.7 

Average Detection Delay 

(steps) 
124.0 98.0 87.0 

V. Conclusions 

This paper presented a comprehensive framework for adaptive anomaly detection in non-

stationary time-series environments. By explicitly integrating distribution monitoring capabilities 

with continual learning mechanisms, our approach addresses the fundamental challenge of 
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maintaining detection accuracy under evolving data patterns. The framework combines statistical 

drift detection, performance monitoring, and dynamic memory management to enable responsive 

adaptation while preventing catastrophic forgetting. 

Extensive experimental evaluation on multiple benchmark datasets demonstrates the 

effectiveness of our framework, achieving an average F1-score of 0.847 across diverse application 

domains, representing a 11.3% improvement over state-of-the-art baselines. The framework 

maintains stable performance across varying drift severities, with only 7.2% degradation from no 

drift to severe drift conditions, while static methods experience up to 31.4% performance loss. 

Computational efficiency analysis confirms the practical feasibility of our approach for real-time 

applications, demonstrating competitive inference speed and reasonable memory requirements 

suitable for deployment in resource-constrained environments. 

Several promising directions exist for future research. First, extending the framework to handle 

multivariate time-series with inter-dimensional relationships could improve detection accuracy in 

complex systems. Second, incorporating uncertainty quantification would provide confidence 

estimates for detection decisions. Third, developing fully unsupervised versions would broaden 

applicability to scenarios where ground truth is unavailable. Finally, a theoretical analysis of 

convergence properties would strengthen the foundation of adaptive anomaly detection methods. In 

conclusion, our work demonstrates that explicitly incorporating distribution monitoring into 

anomaly detection frameworks significantly improves robustness in non-stationary environments. 

As real-world systems become increasingly dynamic and complex, adaptive detection approaches 

will play a crucial role in maintaining reliable anomaly identification capabilities over extended 

operational periods. 
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