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Abstract

Non-stationary time-series data poses significant challenges for anomaly detection systems due to
evolving patterns and distribution shifts that render traditional static models ineffective. This paper
presents a novel continual learning framework that integrates dynamic distribution monitoring
mechanisms to enable adaptive anomaly detection in non-stationary environments. The proposed
framework employs a dual-module architecture consisting of a distribution drift detector and an
adaptive learning component. The distribution drift detector utilizes statistical hypothesis testing to
identify temporal shifts in data distributions, while the adaptive learning module employs rehearsal-
based continual learning strategies with dynamic memory management to maintain model
performance across evolving patterns. We introduce a hybrid loss function that balances stability and
plasticity, preventing catastrophic forgetting while enabling rapid adaptation to new distributions.
Experimental results demonstrate an average Fl-score improvement of 11.3% over the best-
performing baseline, highlighting the robustness and adaptability of the proposed framework under
non-stationary conditions while maintaining computational efficiency suitable for real-time
applications.

Keywords: anomaly detection; non-stationary time-series; continual learning; distribution shift;
concept drift; adaptive learning; dynamic monitoring

I. Introduction

Time-series anomaly detection has emerged as a critical component in numerous domains,
including industrial monitoring, cybersecurity, financial fraud detection, and healthcare systems [1],
Traditional anomaly detection approaches typically assume that time-series data follow a stationary
distribution in which statistical properties remain constant over time. However, real-world systems
frequently exhibit non-stationary behavior characterized by temporal distribution shifts, evolving
patterns, and concept drift. These dynamic changes can severely degrade the performance of static
detection models, leading to increased false alarm rates and reduced sensitivity to genuine anomalies.

Detecting anomalies in non-stationary environments has attracted considerable attention. Deep-
learning models-notably autoencoders, recurrent neural networks, and transformers- have shown a
strong ability to capture complex temporal dependencies in time-series data [2]. Despite these
advances, many methods fail when distribution shifts violate the i.i.d. assumption. If incoming data
statistics deviate substantially from the training distribution, model performance often degrades
rapidly, requiring frequent retraining or manual intervention.

Continual learning, also known as lifelong learning, offers a promising paradigm for addressing
non-stationarity by enabling models to incrementally acquire new knowledge while preserving
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previously learned information [3]. Recent work has begun exploring the intersection of continual
learning and anomaly detection, particularly in the context of concept drift adaptation [4]. However,
existing approaches often lack explicit mechanisms for detecting and characterizing distribution
shifts, relying instead on passive adaptation strategies that may respond too slowly to abrupt changes
or too aggressively to benign fluctuations.

This paper introduces a comprehensive framework for adaptive anomaly detection in non-
stationary time series that explicitly incorporates distribution monitoring capabilities. Our approach
makes several key contributions. First, we develop a distribution drift detection module based on
statistical hypothesis testing that continuously monitors incoming data streams for significant
distributional changes. This module distinguishes between virtual drift, which affects input
distributions without impacting decision boundaries, and actual drift, which necessitates model
adaptation [5]. Second, we propose an adaptive learning architecture that employs rehearsal-based
continual learning with dynamic memory management, allowing the system to selectively retain
representative samples from historical distributions while efficiently incorporating new patterns.
Third, we introduce a hybrid loss function that explicitly balances the competing objectives of
stability and plasticity, preventing catastrophic forgetting while enabling rapid adaptation to
evolving data distributions.

Our framework addresses several limitations of existing approaches. Unlike methods that treat
all distributional changes uniformly, our system adaptively modulates its learning rate and memory
update strategy based on the detected severity and type of drift. Furthermore, our approach
maintains computational efficiency through careful design choices, making it suitable for deployment
in resource-constrained environments requiring real-time processing. We validate our framework
through extensive experiments on multiple benchmark datasets representing diverse application
domains, demonstrating consistent improvements over state-of-the-art baselines in terms of
detection accuracy, adaptation speed, and computational efficiency.

I1. Related Work

Time-series Non-stationary anomaly detection is commonly addressed by combining explicit
drift monitoring with continual adaptation. Adaptive windowing provides an online hypothesis-
testing mechanism to detect distribution changes and trigger updates under time-varying streams
[6]. Recent continual learning under concept drift emphasizes adaptive memory realignment so
rehearsal buffers remain representative as patterns evolve, reducing catastrophic forgetting while
preserving fast adaptation [7], and adaptive-learning anomaly detection frameworks similarly couple
drift-aware updating with practical online constraints [8]. For temporal representation learning,
classical sequence encoders such as LSTM remain a foundational choice for capturing long-range
dependencies [9], while attention-enhanced LSTM variants improve selectivity by focusing on salient
segments for more stable detection signals [10]. Alternative backbones such as temporal convolution
with attention provide efficient multi-scale temporal modeling [11], and Transformer-style modeling
is often paired with change-point detection to explicitly capture regime transitions that coincide with
drift events [12]. Attention-based sequence modeling more broadly continues to be used to extract
robust temporal dependencies from complex time series [13].

To further improve robustness under evolving patterns, a range of controlled adaptation and
structured modeling techniques have been explored. System-level evolution and coordination
mechanisms provide general strategies for maintaining performance as components and conditions
change [14], while uncertainty- and risk-aware summarization offers a principled way to compress
evolving context without discarding risk-relevant information, which is useful when maintaining
stable memory/replay or state summaries over time [15]. Explainable representation learning
encourages feature spaces that support more transparent decisions and updates [16]. Graph-based
modeling introduces relational inductive bias that can stabilize representations when signals are
coupled across variables or entities [17]. Parameter-efficient adaptation methods such as modular
adapters with structural priors enable constrained updates that better balance stability and plasticity
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[18], and multi-scale LoRA provides lightweight adaptation across granularities for rapid post-drift
adjustment [19]. Information-constrained retrieval complements these ideas by explicitly controlling
what external evidence is incorporated into the learning loop, reducing noise amplification during
adaptation [20]. Finally, meta-learning targets rapid adaptation under scarcity and evolving patterns,
offering transferable principles for fast recovery after drift is detected [21].

III. Methodology

A. Problem Formulation

Consider a continuous time-series data stream X = {xq,x,, -, x;, -} where x; € R4 represents
a d-dimensional observation at time t. Our objective is to detect anomalies in this stream while
adapting to distribution shifts. We define the anomaly detection task as learning a scoring function
fo: R? > R parameterized by 6, where higher scores indicate greater anomaly likelihood.

In non-stationary environments, the joint distribution P;(X,Y) evolves over time, where Y €
{0,1} denotes normal or anomalous labels. Following the taxonomy of distribution shifts [13], we
distinguish between two types of drift: virtual drift affecting P(X) and actual drift affecting P(Y|X).
Our framework focuses on detecting and adapting to actual drift, which directly impacts detection
performance.

B. Distribution Drift Detection Module

The drift detection module continuously monitors the incoming data stream to identify material
distribution shifts that can invalidate the assumptions of a static anomaly detector. We employ a two-
phase strategy that unifies (i) statistical hypothesis testing for shift discovery and (ii) performance
monitoring for shift qualification, so that adaptation is triggered only when the detected drift is both
statistically credible and operationally consequential.

In the first phase, we perform hypothesis testing between a reference window and an incoming
window to flag distributional change points. This choice is motivated by the practical reality that
upstream pipeline dynamics can reshape the observed data distribution; Gao et al. [22] highlight how
heterogeneous ETL environments and scheduling changes can alter downstream data characteristics,
making explicit drift monitoring a necessary control signal rather than an optional diagnostic. In the
second phase, we monitor detector behavior —such as error distribution shifts, alert rate instability,
and confidence degradation—to decide whether the drift meaningfully affects decision quality. This
step is designed to reduce unnecessary model updates and to strengthen traceability; it aligns with
Lai et al. [23] in emphasizing explainable, causally grounded assessment where changes are linked
to interpretable evidence rather than treated as opaque triggers. Finally, because the stream may
contain heterogeneous, high-dimensional signals, we monitor drift on learned representations rather
than raw inputs; this follows the representation-centric modeling rationale used by Xie and Chang
[24] for heterogeneous record-based sequences, where transformer-derived features provide a more
stable basis for downstream risk identification and monitoring. The resulting two-phase drift decision
rule and the adaptation trigger conditions are formalized as follows:

Statistical Distribution Monitoring: We maintain a sliding reference window W, containing
recent samples from the current distribution and a test window W, for incoming data. To detect
distribution shifts, we apply the Kolmogorov-Smirnov (KS) test, a non-parametric method that
compares empirical cumulative distribution functions without assumptions about underlying
distributions.

For each dimension i of the input space, we compute the KS statistic:

Dl(g = Sup|Fr(;}(x) - thzt(x)l
X

Where F®. and FY

ref test
reference and test windows, respectively. The overall drift score is computed as:

are the empirical cumulative distribution functions for dimension i in the
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A distribution shift is detected when Dy, exceeds a predefined threshold T4, typically set
using statistical significance levels.

Performance-Based Drift Detection: To complement statistical monitoring, we track the model's
detection performance using an exponentially weighted moving average (EWMA) of prediction
confidence scores:

Ci=a-c;+(1—a) Ci,

where ¢, represents the prediction confidence at time t and a is the smoothing parameter. A
significant decrease in C; indicates potential concept drift requiring model adaptation. We detect
performance drift when:

AC=|C = Crywl > Tperf

where w is the monitoring window size and T, is the performance drift threshold.

C. Adaptive Continual Learning Module

Upon detecting distribution drift, the adaptive learning module updates the anomaly detection
model while preserving knowledge of previous distributions. Our approach is built upon a deep
autoencoder architecture enhanced with attention mechanisms for temporal feature extraction.

Base Architecture: The core detection model consists of an encoder-decoder structure with
LSTM layers augmented by attention mechanisms. The encoder maps input sequences to a latent
representation:

hy = LSTMepc (x¢, he—1)

z; = Attention(hy, ..., hy)

The decoder reconstructs the input from the latent representation:
% = LSTMgec (e, St-1)

The anomaly score is computed based on reconstruction error and latent space deviation:
Alxe) = M1 % — xel2 + Azze — gl

where u, represents the mean latent representation of normal samples, and 4;, 1, are weighting
coefficients.
Continual Learning Strategy: To enable continual adaptation without catastrophic forgetting,
we employ a rehearsal-based approach with dynamic memory management. The memory buffer M
stores representative samples from encountered distributions. During training on a new data batch
Bjew, We combine it with samples from memory:
Berain = Bpew U Sample(M, k)

where k is the number of samples retrieved from memory. The model is updated by minimizing a

hybrid loss function:

Lt(rta{’ = Lrecon + BlLyeg + BZLcantmut
The reconstruction loss ensures accurate modeling of normal patterns:

Lrecon = |x - 2'%

‘B .
| train | XEBypain

The regularization loss prevents drastic parameter changes:

Lreg= ) 10, = 0013
J
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Where 6°¢ represents parameters before the current update. The contrastive loss maintains
separation between normal and anomalous representations in latent space:

exp(sim(z; ) /1)
08 .

2 exp(51m(zi,zj)/r)

Leontrast = —1
h . . . . . + . L .
where sim(-,) denotes cosine similarity, z; is a positive sample, and 7 is the temperature
parameter.

D. Dynamic Memory Management

Effective memory management is critical for balancing adaptation speed with knowledge
retention. We propose an adaptive memory update strategy that responds to detected drift severity.

Drift-Aware Memory Update: Upon detecting distribution drift, we classify its severity based
on Dgyire magnitude. For mild drift (Dgrirr < Thign), we gradually replace outdated samples. For
severe drift (Dgyirr = Thign), We perform aggressive memory realignment by removing samples with
high reconstruction error under the new distribution.

The memory update probability for sample x,,, € M is computed as:
|xm - fr\n|2 - uerr)

Gerr

Bremove (xm) =0 (Y :

where o is the sigmoid function, u,, and o, are the mean and standard deviation of
reconstruction errors in current memory, and y controls the removal aggressiveness.

Diverse Sample Selection: When adding new samples to memory, we employ a diversity-based
selection criterion to ensure comprehensive coverage of the current distribution. We use k-means
clustering in the latent space and select samples closest to cluster centroids:

Spew = {argxmeicn lzy —¢il2 1 =1,..,K}
7

where (; represents the j-th, ¢; is its centroid, and K is the number of clusters.

E. Adaptive Learning Rate Scheduling

To balance stability and plasticity, we dynamically adjust the learning rate based on drift
severity and model confidence. The adaptive learning rate is computed as:

Nt = Npase * (1 +ow- Ddrift) : eXp(—P : Ct)

Where 1,5 is the base learning rate, w controls drift sensitivity, and p modulates the influence of
model confidence. This formulation increases learning rate when drift is detected while decreasing it
when the model demonstrates high confidence, preventing unnecessary updates to stable patterns.

IV. Experiments
A. Datasets

We evaluate our framework on four publicly available benchmark datasets representing diverse
application domains and drift characteristics: SWaT (Secure Water Treatment): A dataset from a
water treatment testbed containing 11 days of continuous operation with 51 sensors and actuators.
The dataset includes both normal operations and various cyber-physical attack scenarios,
representing gradual and abrupt distribution shifts [25]. With 946,722 samples and an anomaly ratio
of 11.98%, SWaT provides a realistic testbed for industrial monitoring applications. SMAP (Soil
Moisture Active Passive): A real-world dataset from NASA containing telemetry data from spacecraft
sensors. It includes 25 dimensions with 135,183 samples and a 13.13% anomaly ratio, exhibiting
natural temporal evolution in sensor readings [26]. The dataset demonstrates gradual drift patterns
typical of space systems. MSL (Mars Science Laboratory): Another spacecraft dataset from NASA
with 55 channels monitoring the Mars rover systems over 132,801 samples. With a 10.72% anomaly
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ratio, this dataset demonstrates long-term non-stationary behavior with seasonal variations, making
it ideal for evaluating adaptation to slow, continuous drift. SMD (Server Machine Dataset): A 5-week
dataset from a large internet company containing 38 dimensions from 28 server machines, totaling
708,405 samples. With only a 4.16% anomaly ratio, it exhibits concept drift due to varying workloads
and operational conditions [27], representing mixed drift patterns common in cloud computing
environments. Table I summarizes the key characteristics of these datasets, including their
dimensionality, length, anomaly ratio, and drift types.

Table I. Dataset Characteristics.

Dataset Dimensions Length Anomaly Ratio(%) Drift Type
SWaT 51 946,722 11.98 Abrupt
SMAP 25 135,183 13.13 Gradual

MSL 55 132,801 10.72 Seasonal
SMD 38 708,405 4.16 Mixed

B. Results and Analysis

Table II presents the comprehensive performance comparison across all datasets. Our proposed
framework consistently outperforms baseline methods, achieving the highest average F1-score of
0.847 across datasets, representing a 11.3% improvement over the best baseline
(AnomalyTransformer at 0.734).

Table II. Performance Comparison Across Methods and Datasets (F1-score).

Method SWaT SMAP MSL SMD Average
LSTM-VAE 0.673 0.689 0.671 0.623 0.664
OmniAnomaly 0.721 0.712 0.694 0.687 0.704
USAD 0.748 0.723 0.715 0.701 0.722
TranAD 0.812 0.745 0.732 0.728 0.754
AnomalyTransformer 0.798 0.762 0.749 0.734 0.761
RADM 0.735 0.698 0.687 0.665 0.696
Online-LSTM 0.689 0.671 0.658 0.642 0.665
EWC-AE 0.776 0.731 0.724 0.715 0.737
Ours 0.891 0.832 0.819 0.846 0.847

On the SWaT dataset, our method achieves an F1-score of 0.891, significantly outperforming the
second-best method (TranAD at 0.812). The SMAP and MSL datasets show similar trends, with our
framework achieving F1-scores of 0.832 and 0.819, respectively. The SMD dataset presents the most
challenging scenario due to its high-dimensional feature space and frequent concept drift, yet our
framework maintains robust performance with an F1-score of 0.846.

Figure 1 visualizes the Fl-score comparison across all methods and datasets, clearly
demonstrating the consistent superiority of our approach.
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Figure 1. Performance comparison across different methods and datasets.

To evaluate adaptation capabilities, we analyze performance across different drift severities.
Figure 2 shows F1-score degradation as drift magnitude increases. Our framework maintains stable
performance across mild to severe drift conditions, with only a 7.2% F1-score decrease from no drift
to severe drift scenarios. In contrast, static methods like LSTM-VAE and USAD experience 31.4% and
28.7% degradation, respectively.
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Figure 2. Performance degradation under different drift severities.

The explicit drift detection mechanism proves crucial. When comparing against EWC-AE, which
employs continual learning without drift detection, our method shows a 12.8% better F1-score under
moderate drift conditions. Table III details drift detection accuracy, showing our KS-test-based
approach achieves 94.3% accuracy in identifying distribution shifts with minimal false positives (3.2%
false positive rate).

Table III. Drift detection accuracy analysis.

) Statistical Performance Dual Monitoring
Metric
Only Only (Ours)
Detection Accuracy (%) 89.7 86.2 94.3
False Positive Rate (%) 5.8 8.1 3.2
False Negative Rate (%) 10.3 13.8 5.7
Average Detection Delay
124.0 98.0 87.0
(steps)

V. Conclusions

This paper presented a comprehensive framework for adaptive anomaly detection in non-
stationary time-series environments. By explicitly integrating distribution monitoring capabilities
with continual learning mechanisms, our approach addresses the fundamental challenge of
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maintaining detection accuracy under evolving data patterns. The framework combines statistical
drift detection, performance monitoring, and dynamic memory management to enable responsive
adaptation while preventing catastrophic forgetting.

Extensive experimental evaluation on multiple benchmark datasets demonstrates the
effectiveness of our framework, achieving an average Fl-score of 0.847 across diverse application
domains, representing a 11.3% improvement over state-of-the-art baselines. The framework
maintains stable performance across varying drift severities, with only 7.2% degradation from no
drift to severe drift conditions, while static methods experience up to 31.4% performance loss.
Computational efficiency analysis confirms the practical feasibility of our approach for real-time
applications, demonstrating competitive inference speed and reasonable memory requirements
suitable for deployment in resource-constrained environments.

Several promising directions exist for future research. First, extending the framework to handle
multivariate time-series with inter-dimensional relationships could improve detection accuracy in
complex systems. Second, incorporating uncertainty quantification would provide confidence
estimates for detection decisions. Third, developing fully unsupervised versions would broaden
applicability to scenarios where ground truth is unavailable. Finally, a theoretical analysis of
convergence properties would strengthen the foundation of adaptive anomaly detection methods. In
conclusion, our work demonstrates that explicitly incorporating distribution monitoring into
anomaly detection frameworks significantly improves robustness in non-stationary environments.
As real-world systems become increasingly dynamic and complex, adaptive detection approaches
will play a crucial role in maintaining reliable anomaly identification capabilities over extended
operational periods.
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