
Review

Not peer-reviewed version

Off-Target Effects of Mirabegron on Muscarinic Receptors

[Shizuo Yamada](#) ^{*}, [Masaki Mogi](#), [Satomi Kagota](#), Kazumasa Shinozuka

Posted Date: 5 December 2025

doi: [10.20944/preprints202512.0559.v1](https://doi.org/10.20944/preprints202512.0559.v1)

Keywords: mirabegron; off-target effect; anticholinergic effect

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a [Creative Commons CC BY 4.0 license](#), which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Off-Target Effects of Mirabegron on Muscarinic Receptors

Shizuo Yamada ^{1,*}, Masaki Mogi ², Satomi Kagota ³ and Kazumasa Shinozuka ³

¹ Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka 422-8526, Japan

² Department of Pharmacology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan

³ Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan

* Correspondence: yamada@u-shizuoka-ken.ac.jp

Abstract

Older adults with multiple diseases are likely to be prescribed multiple medications including anticholinergic agents, which are frequently prescribed to manage conditions such as overactive bladder and chronic obstructive pulmonary disease and Parkinson's disease. Overactive bladder (OAB) has been the subject of increased disease awareness and is a common and significant cause of reduced quality of life, particularly in the elderly. The selective β_3 adrenoceptor agonist, mirabegron was developed for the pharmacological treatment of OAB. Mirabegron has been shown to exert off-target effects on various functional proteins such as muscarinic receptors in rat tissues. This agent may relax the detrusor muscle by activating β_3 adrenoceptors and also antagonizing muscarinic receptors. Mirabegron and antimuscarinics exerted additive effects on muscarinic receptor binding and relaxant responses of cholinergic contractions of the detrusor muscle. Mirabegron excreted in human urine appears to directly attenuate muscarinic receptor-mediated functions in the bladder. Combination therapy of mirabegron and solifenacin in patients with OAB may enhance not only their therapeutic effects on OAB, but also increase the risk of anticholinergic adverse effects. Therefore, the safety of concomitant use of mirabegron and other drugs such as antimuscarinics for elderly patients needs to be carefully considered.

Keywords: mirabegron; off-target effect; anticholinergic effect

1. Anticholinergic Burden

Older adults frequently have many systemic diseases that require treatment with multiple drugs, and, thus, polypharmacy is a significant concern in the management of these individuals. [1–3] More than 600 medicinal products with broad therapeutic ranges have been reported to exhibit anticholinergic activity. [4,5] The age-related alteration in the body's physiology affects significantly pharmacokinetic and pharmacodynamic factors, such as body composition, a change in the volume of distribution for drugs, the reduced clearance of multiple medications and altered sensitivity to neurotransmitter receptors. In older adults, the renal excretion and hepatic metabolism of drugs are reduced, which may result in their accumulation in tissues, thereby increasing the risk of anticholinergic adverse effects. [6] Since the permeability of the blood-brain barrier increases with age, central adverse effects such as cognitive impairment need to be considered when drugs with anticholinergic effects are prescribed to elderly patients. [7,8] The altered pharmacological sensitivity to the muscarinic receptor blockade may occur by a reduction in the cholinergic reserve and a structural change in muscarinic receptors that may bring a significant impact on the agonist and antagonist receptor binding affinities and on the signal transduction. These alterations increase the

risk of adverse effects to commonly used medications including anticholinergic drugs in the elderly. The essentiality of a burden scale for anticholinergic accumulation has been emphasized. [9–16]

Yamada et al. [13,14] developed a pharmacological evidence-based anticholinergic burden scale (ABS) for 260 medications used frequently for Japanese elderly patients. In this scale, muscarinic receptor binding activity of each drug was extensively measured by the radioreceptor binding assay using a selective radioligand, [*N*-methyl-³H]scopolamine chloride (NMS). The anticholinergic burden scale was evaluated by the measurement of muscarinic receptor binding activity of each drug in the consideration of its maximal blood concentrations after the administration at the clinical dose in humans. This scale is the first comprehensive assessment of anticholinergic activities for 260 drugs by pharmacological methods with the consideration of pharmacokinetic properties in humans. According to this scale, 33 drugs were defined as those with strong anticholinergic activity (ABS 3), 37 drugs as those with moderate activity (ABS 2), and 26 drugs as those with weak activity (ABS 1). Other drugs defined as ABS 0 had no muscarinic receptor binding activity even at high concentrations. Kagota et al. [17] investigated functional anticholinergic effects of 60 medications classified as ABS 3 (strong) or 2 (moderate) by the inhibitory effects on the cholinergic (carbachol)-induced contractions in the rat isolated bladder and ileal smooth muscles using the organ bath method. All drugs examined inhibited the muscarinic receptor-mediated smooth muscle contraction in a concentration-dependent manner in the rat isolated bladder and ileum, and their functional activities were positively correlated with muscarinic receptor binding activities. The medication with higher anticholinergic burden score and higher load may cause potentially greater risk of anticholinergic adverse effects in patient with polypharmacy. Therefore, the scoring of anticholinergic burden may predict that adverse effects of different drugs with anticholinergic effects add up in a linear fashion.

Overactive bladder (OAB) has been the subject of increased disease awareness and is a common and significant cause of reduced quality of life, particularly in the elderly. OAB is defined as urinary urgency, usually accompanied by frequency and nocturia, with or without urgency incontinence, in the absence of urinary tract infection or other obvious pathology. The mainstay of treatment of OAB has been anticholinergic medications. These drugs block muscarinic receptor throughout the body, not only the bladder in the peripheral tissues but in the brain. Antimuscarinic agents such as solifenacin have been utilized as therapeutic agents, but have specific anticholinergic adverse effects, such as dry mouth, constipation, the decline of cognitive function, and an increased residual urine volume. [18] A previous study reported that 70% of patients treated for OAB with antimuscarinics were 61–80 years old. [5] The elderly patients are more susceptible to these anticholinergic adverse effects in the peripheral and central organs, especially as there is increased permeability of the blood brain barrier. The anticholinergic drugs for OAB are able to enter the central nervous system and lead to central side effects. There is increasing evidence that a high anticholinergic load may be linked to the development of cognitive impairment and dementia and increased risk of mortality. Therefore, careful attention should be paid when treating OAB in the elderly.

The selective β_3 adrenoceptor stimulants, mirabegron and vibegron were developed for the pharmacological treatment of OAB. [19–22] Both drugs are considered to stimulate β_3 -adrenoceptors in the bladder voiding muscle, resulting in the relaxation of the detrusor smooth muscle. Mirabegron was previously shown to exert off-target effects against various functional proteins such as neurotransmitter receptors, transporters and hepatic enzymes [23–30], as summarized by Dehvari et al. [23] Recently, Yamada et al. [31,32] showed that mirabegron and vibegron exerted antimuscarinic effects in rat tissues by pharmacological procedures. The off-target effects of mirabegron on muscarinic receptors are reviewed herein.

2. Off-Target Effects of Mirabegron on Muscarinic Receptors

Off-target effects are defined as the inhibition or activation of a molecule by a drug that is different from its original target, which generally results in not only undesirable adverse effects, but also unexpected new pharmacological actions or the discovery of new drug targets. [23,33,34]

Mirabegron has been shown to exert off-target effects on different various functional protein molecules, such as muscarinic M₂ receptors, β_1 adrenoceptors, a_{1A} adrenoceptors, a_{1D} adrenoceptors, drug metabolizing enzymes, cytochrome P450 (CYP2D6, CYP3A4), dopamine transporters, noradrenaline transporters, organic cation transporters, P-glycoprotein, and sodium channel site 2 (Table 1). [23–30] According to the material submitted to the FDA by Astellas Co. Ltd., mirabegron exhibits binding affinity for human M₂ muscarinic receptors (Ki value of 2.1 mM) (U.S. Food and Drug Administration. Pharmacology/Toxicology NDA/BLA Review and Evaluation (NDA 202-611) 2012 [Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202611Orig1s000PharmR.pdf]). The Australian Department of Health Therapeutic Goods Administration's Australian Public Assessment on Mirabegron (Department of Health Therapeutic Goods Administration: Australian Public Assessment Report for (Mirabegron) (2014) reported that mirabegron bound to muscarinic receptors in muscarinic receptor-expressing cells [29].

Cernecka et al. [35] previously reported that mirabegron inhibited carbachol- or KCl-induced contractions in the rat detrusor muscle, and this relaxant effect was more pronounced for carbachol-induced contractions. Yamada et al. [31,32] demonstrated that both mirabegron and vibegron bound to muscarinic receptors in the bladder and other tissues of rats by the radioligand binding assay using [³H]NMS (Fig. 1 for mirabegron) and that both agents relaxed concentration-dependently the carbachol-induced contractions in the isolated bladder detrusor muscle in the presence of the non-selective β -adrenoceptor antagonist, propranolol. The relaxant activities (EC₅₀ values) correlated significantly with their muscarinic receptor binding activities (IC₅₀ values) [31,32] in the rat bladder. The relaxation of human and rodent detrusor muscles by mirabegron was characterized by a shallow concentration-effect curve (EC₅₀ values in the high nM to low μ M range). [18,35,36] A two-site model analysis revealed a high-affinity relaxant response (EC₅₀ : 87.3 nM, relative contribution: 44.5%) and low-affinity relaxant response (EC₅₀ : 10.7 mM, relative contribution: 55.5%) for mirabegron. [31] The efficacy (EC₅₀) of the low-affinity relaxant response of carbachol-induced contractions by mirabegron was associated closely with its micromolar binding affinity to muscarinic receptors revealed by the competitive inhibition of specific [³H]NMS binding in the rat bladder. These findings suggested the pharmacological antagonism of mirabegron on muscarinic receptors. The mirabegron-induced relaxation of the human detrusor tissue *in vitro* required concentrations that were markedly higher than its affinity to b₃-adrenoceptors and plasma levels during standard dosing. EC₅₀ values for the mirabegron-induced relaxation of precontracted human detrusor tissues ranged between 588 nM and 3.9 mM, [19,36] whereas a binding constant of 2.5 nM for b₃-adrenoceptors, and a maximum plasma concentration of 137 nM during standard dosing have been reported. [19,37] The b₃-adrenoceptor specificity of mirabegron has been investigated and different mechanisms have been proposed to account for the attenuation of storage symptoms by mirabegron. [38–40] The mechanisms responsible for the effects of mirabegron on storage symptoms remain unclear. Huang et al. [40] questioned the specificity of mirabegron and proposed other mechanisms to account for improvement of storage symptoms by mirabegron, including muscarinic receptor antagonism, inhibition of cholinergic neurotransmission, or effects on afferent signaling and central nervous system. Therefore, it is possible that the efficacy of mirabegron to relax detrusor muscle results from not only b₃-adrenoceptor activation, but also from antagonism of muscarinic receptors in clinical settings.

M₂ receptor antagonism has been suggested to play a role in the mirabegron-induced relaxation of cholinergic contractions of the detrusor muscle. Yamada et al. [31] demonstrated that the binding affinity of mirabegron was several-fold higher in the bladder and myocardium than in the brain and salivary glands, indicating a higher affinity for the M₂ receptor subtype than for M₃ or M₁ receptors. The higher binding affinity for the M₂ receptor is consistent with findings on muscarinic receptor subtype-expressing cells. [29] M₂ receptor antagonism by mirabegron is considered to amplify the relaxation response by activating b₃ adrenoceptors via increases in cAMP levels. M₂ and M₃ receptor subtypes are expressed in the bladder, and the latter is primarily responsible for contractions of the detrusor muscle. [41,42] The function of the M₂ receptor is considered to indirectly enhance M₃ receptor-mediated contractions by inhibiting relaxation of the detrusor muscle. [43,44] This M₂

receptor-stimulated inhibition of detrusor muscle relaxation may occur by suppressing adenylate cyclase activation, which may attenuate cAMP production by the adenylate cyclase activation of β_3 adrenoceptor. [43,44] Ehlert et al. [45,46] found that the isoproterenol-induced relaxation of cholinergic contractions by a transmural stimulation of mouse isolated bladder strips was inhibited by the stimulation of M_2 receptors by endogenous acetylcholine. Therefore, the contractile response of the detrusor muscle to muscarinic agonists may be attributed in part to the M_2 receptor-mediated inhibition of the cAMP-increasing β_3 agonist-induced relaxant response. [44] Therefore, M_2 receptor antagonism by mirabegron is considered to amplify the relaxation response by activating β_3 adrenoceptors through increases in cAMP levels. It is assumed that the dual action of β_3 adrenoceptor activation and M_2 muscarinic receptor antagonism by mirabegron occurs in the pharmacotherapy of patients with OAB.

3. Combination Therapy of Mirabegron and Antimuscarinic Agents

Drug combinations are expected generally to exert additive, synergistic or antagonistic pharmacological effects. A systematic review and network meta-analysis by Kelleher et al. [47] showed that the combination of solifenacin (5 mg) and mirabegron (25 or 50 mg) was more effective than mirabegron (50 mg) alone in terms of efficacy in patients with OAB. A detailed examination of the findings obtained showed that anticholinergic adverse events (dry mouth, constipation, visual disturbances) occurred more frequently than with solifenacin alone. A similar finding was reported by Herschorn et al., [48] where combination therapy with both drugs resulted in a higher frequency of dry mouth, constipation, and dyspepsia compared to monotherapy. Therefore, it is considered that the higher incidence of anticholinergic adverse events by combination therapy with mirabegron and solifenacin results partly from the antagonistic effects of mirabegron on muscarinic receptors. Soliman et al. [49] conducted a prospective randomized control study on pediatric patients (190 patients) newly diagnosed with OAB to investigate the efficacy and safety of mirabegron versus solifenacin in the treatment of OAB in children. Dry mouth was reported in 2.8, 10 and 0 % and constipation in 2.8, 11.4 and 1.4% in the mirabegron group (50 mg once daily), solifenacin (5 mg) group, and placebo group, respectively. The incidence of anticholinergic adverse effects was higher with mirabegron than with the placebo. These findings suggest that the combination of mirabegron and an antimuscarinic drug increases the risk of anticholinergic adverse events and also that the muscarinic receptor binding activity of mirabegron is clinically meaningful. A previous study reported that 70% of patients treated with antimuscarinic drugs for OAB were 61-80 years old. [5] They should be paid attention for the central adverse effects such as the decline of cognitive and memory function and depression. Therefore, the anticholinergic effects of mirabegron and antimuscarinics require more detailed investigations for the safety of combination therapy in elderly patients with OAB.

4. Additive Effects of Mirabegron and Antimuscarinic Agents on Muscarinic Receptor Binding and on Relaxation of Cholinergic Detrusor Muscle Contractions

The efficacy and safety of combination therapy with mirabegron and solifenacin compared with monotherapy and placebo in patients with OAB have been reported by Kelleher et al. [47] and Herschorn et al [48]. On the other hand, according to the careful inspection of data concerning anticholinergic side effects, the incidence of anticholinergic adverse events, such as dry mouth and constipation, was found to be higher with combination therapy of solifenacin and mirabegron than with solifenacin alone, suggesting the enhancement of anticholinergic side effects. Based on the clinical observation, very recently, Yamada et al. [50] have investigated whether the combination of mirabegron and antimuscarinics (solifenacin, imidafenacin) exerted additive effects on muscarinic receptor binding and cholinergic contractions of the detrusor muscle in rats. Their data revealed that the muscarinic receptor binding activity of solifenacin in rat tissue was additively enhanced by its

combination with mirabegron (Fig. 2). Moreover, mirabegron enhanced the relaxant effects of solifenacin on carbachol-induced contractions of rat isolated detrusor muscle strips (Fig. 3). These additive effects on muscarinic receptor binding and functional responses were more pronounced at lower concentrations of solifenacin. These findings may indicate that mirabegron exerted additive effects on antimuscarinic-induced pharmacological actions on muscarinic receptors, which improved therapeutic effects on OAB and also increased the risk of anticholinergic adverse effects. The anticholinergic burden scale of mirabegron was classified as score 2, and that of solifenacin as score 3. [13–15] The additive effects of the anticholinergic burden may contribute to the enhancement by mirabegron of antimuscarinic-induced muscarinic receptor binding and relaxant effects on the cholinergic contractions of rat tissues. Moreover, similar additive effects on muscarinic receptor binding in rat tissues was observed by the combination of mirabegron and imidafenacin, another anticholinergic agent which was frequently used for the therapy of OAB in Japan. [50] The muscarinic receptor binding activities of imidafenacin in rat tissues were additively enhanced by the addition of mirabegron, which was pronounced at lower concentration of imidafenacin. The relaxant effect of cholinergic contraction in the rat smooth muscle by mirabegron and imidafenacin in the presence of propranolol was also additive. Such additive effects of the combination of mirabegron and low concentrations of antimuscarinics in the preclinical study may be associated with the finding by Shin et al. [51] who showed the good efficacy and safety of add-on therapy with low-dose antimuscarinics in patients with suboptimal responses after 4 weeks of mirabegron monotherapy. Collectively, these findings suggest the clinical relevance of the scoring of anticholinergic burden by the combination therapy with mirabegron and other medications with anticholinergic effects in patients with polypharmacy.

In the combination of mirabegron and solifenacin or imidafenacin, Sugaya et al. [52] examined the effect of combining mirabegron and 5-hydroxymethyl tolterodine (an active metabolite of fesoterodine, clinically used anticholinergic agent for the OAB treatment), in a rat model of pelvic congestion. The additive relaxant effects of mirabegron and 5-hydroxymethyl tolterodine were observed in vitro in the electrical field stimulation-induced contractions of bladder strips from pelvic congestion rats. In vivo, bladder capacity was increased significantly by a combination of mirabegron and 5-hydroxymethyl tolterodine, with the combined effect exceeding the sum of the effects of monotherapies. These results indicate that the combination of mirabegron and 5-hydroxymethyl tolterodine causes the potential of synergistic effects in a rat pelvic congestion model.

5. Pharmacokinetics of Mirabegron and Prediction of Human Bladder Muscarinic Receptor Occupancy

Similarities in the muscarinic receptor binding activities of anticholinergic agents used clinically to treat OAB has been reported between rat and human tissues, [14] suggesting negligible differences in the tissue sensitivity of muscarinic receptors between rodents and humans. Using the muscarinic receptor binding activity of mirabegron in the rat bladder and its pharmacokinetic parameters in humans, Yamada et al. [31] estimated human plasma unbound and urinary unbound drug concentrations at clinical doses, from which human bladder muscarinic receptor occupancy was predicted. The absorption of the clinical dose of mirabegron (50 mg/day) after its oral administration to the elderly was rapid, with a maximum plasma concentration of approximately 85 nM and a time to reach T_{max} of 3–4 h. [37] In healthy Japanese male subjects, the mean elimination half-life ($t_{1/2b}$) was 25.1–36.4 h, [53] which was consistent with the range observed in non-Japanese males following single- (27.9–40.6 h) and multiple-dose administration (29.2–36.8 h) in those previous studies. [37,54] Mirabegron accumulated upon once-daily dosing relative to single-dose data. Furthermore, the oral administration of [¹⁴C]-labeled mirabegron to rats elevated tissue: plasma radioactivity levels in some organs, with ratios increasing to 20 after its repeated administration, and it was then slowly eliminated from a number of tissues, including the kidney. [23] Pharmacokinetic parameters suggest that urinary mirabegron is significantly concentrated by active tubular secretion and water reabsorption in addition to renal glomerular filtration. The bladder tissue concentration of

mirabegron was markedly higher than its plasma concentration, while its urinary concentration in the elderly after a single 50 mg dose was predicted to be in the micromolar (mM) range, suggesting that higher concentrations of mirabegron are excreted in the urine after repeated administration. As shown in Figure 4, human urinary unbound concentrations (1.6-8.2 mM) of mirabegron at a clinical dose (50 mg) were significantly (approximately 400-fold) higher than plasma unbound concentrations. [31] As mentioned above, species difference in muscarinic receptor binding affinity of mirabegron in the bladder between rats and humans is small. Based on the assumption of the interstitial concentration of mirabegron in the bladder smooth muscle is close to its urine concentration, the estimation of muscarinic receptor occupancy in the human bladder by mirabegron was performed. According to the predictions by the pharmacokinetics and micromolar receptor binding affinity of mirabegron, muscarinic receptor occupancy was estimated to be 37-76% in the bladders of elderly subjects who received a single 50-mg dose of this drug. [31] Therefore, it is hypothesized that mirabegron excreted in human urine blocks directly muscarinic receptor-mediated functions in the bladder, possibly by simple diffusion across the urothelium during urine storage, contributing to the therapeutic and adverse side effects of this agent.

6. Conclusion

Polypharmacy is a significant concern in the medication and management by anticholinergic medication, particularly in older adults. Moreover, an age-related decline in the renal excretion and hepatic metabolism of drugs results in their accumulation in tissues and increases in the permeability of the blood-brain barrier, indicating a significant increase in the risk of anticholinergic adverse effects in the peripheral and central nervous system, such as cognitive impairment. Mirabegron, β_3 adrenoceptor stimulant clinically utilized to treat patients with OAB, exerts off-target effect on various functional molecules such as neurotransmitter receptors, drug metabolizing enzymes and transports. This drug was shown to antagonize muscarinic receptors that are distinct from its target molecule, the bladder β_3 adrenoceptor, by radioligand receptor binding assay of muscarinic receptors and functional assay in the rat tissues using organ bath method. Therefore, the relaxation of the detrusor muscle by mirabegron may be the result of antagonizing muscarinic receptors as well as activating β_3 -adrenoceptors. The prediction by pharmacokinetics and micromolar receptor binding affinity of mirabegron estimated a significant amount of muscarinic receptor occupancy in the bladders of elderly subjects who received clinical dose of mirabegron. Mirabegron and antimuscarinics (solifenacina, imidafenacina) at low concentrations exerted additive effects on muscarinic receptor binding and on the relaxant responses of cholinergic detrusor muscle contractions, and these effects were considered to involve partly in the enhancement of not only their therapeutic effects in patients with OAB, but also anticholinergic adverse effects. The safety of combination therapy for elderly patients with OAB need to be carefully considered. Therefore, concomitant use of mirabegron and drugs having anticholinergic properties such as antimuscarinics may be responsible for the higher incidence of anticholinergic adverse event. Therefore, careful attention should be paid when drugs with anticholinergic effects are prescribed to elderly patients. An evaluation of scoring of the anticholinergic burden in polypharmacy may be clinically significant by using anticholinergic burden scales.

Author contributions All authors contributed to the preparation, review, and finalization of the manuscript, approved the final draft of the manuscript before its submission, and agreed to be accountable for all aspects of the work. The interpretation and conclusions contained in the present study are those of the authors alone.

Funding This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgments The authors would like to thank Ms. Masae Mochizuki (University of Shizuoka) for her valuable secretory work.

Conflict of interest All authors declare that they have no conflicts of interest.

References

1. Kojima T, Akishita M, Kameyama Y, Yamaguchi K, Yamamoto H, Eto M, et al.: High risk of adverse drug reactions in elderly patients taking six or more drugs: Analysis of inpatient database. *Geriatr Gerontol Int* 2012; **12**: 761-62.
2. Ruxton K, Woodman RJ, Magoni AA. Drugs with anticholinergic effects and cognitive impairment, falls and all-cause mortality in older adults. A systematic review and meta-analysis. *Br J Clin Pharmacol* 2015; **80**: 209-20.
3. Salahudeen MS, Duffull SB, Nishtaka PS. Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: a systematic review. *BMC Geriatr* 2015; **15**:31.
4. Tune LE. Anticholinergic effects of medication in elderly patients. *J Clin Psychiatry* 2011; **62** Suppl 21:11-14.
5. Araklitis G, Robinson D, Cardozo L. Cognitive effects of anticholinergic load in women with overactive bladder. *Clin Interv Aging* 2020; **15**: 1493-503.
6. Shi S, Klotz U. Age-related changes in pharmacokinetics. *Curr Drug Metab* 2011; **12**: 601-10.
7. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. *Neuron* 2015; **85**: 296-302.
8. Shiota T, Torimoto K, Okuda M, Iwata R, Kumamoto H, Miyake M, et al. Cognitive burden and polypharmacy in elderly Japanese patients treated with anticholinergics for an overactive bladder. *Low Urin Tract Symptoms* 2020; **12**: 54-61.
9. Chew ML, Mulsant BH, Pollock BG, Lehman ME, Greenspan A, Mahmoud RA, et al. Anticholinergic activity of 107 medications commonly used by older adults. *J Am Geriatr Soc* 2008; **56**:1333-41.
10. Rudolph JL, Salow MJ, Angelini MC, McGlinchey RE: The anticholinergic risk scale and anticholinergic adverse effects in older persons. *Arch Intern Med* 2008; **168**: 508-13.
11. The 2019 American Geriatrics Society Beers Criteria® Update Expert Panel: American Geriatrics Society 2019 Updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. *J Am Geriatr Soc* 2019; **67**: 674-94.
12. Jun K, Hwang S, Ah Y-M, Suh Y, Lee J-Y. Development of an anticholinergic burden scale specific for Korean older adults. *Geriatr Gerontol Int* 2019; **19**: 628-34.
13. Yamada S, Mochizuki M, Chimoto J, Futokoro R, Kagota S, Shinozuka K. Development of a pharmacological evidence-based anticholinergic burden scale for medications commonly used in older adults. *Geriatr Gerontol Int* 2023; **23**: 558-64.
14. Yamada S, Mochizuki M, Atobe K, Kato Y. Pharmacokinetic and pharmacodynamic consideration for the anticholinergic burden scale of drugs. (review). *Geriatr Gerontol Int* 2024; **24**:81-7.
15. Yamada S, Mochizuki M. Anticholinergic adverse events by polypharmacy and anticholinergic burden score. *Jap J Geriatr.* 2024; **61**: 256-70. (in Japanese)
16. Mizokami F, Mizuno T, Taguchi R, Nasu I, Arai S, Higashi K, et al. Japanese Society of Geriatric Pharmacy Working Group on Japanese Anticholinergic Risk Scale. Development of the Japanese anticholinergic risk scale: English translation of the Japanese article. *Geriatr Gerontol Int* 2025; **25**:5-13.
17. Kagota S, Futokoro R, Maruyama-Fumoto K, Chimoto J, Yamada S, Shinozuka K. Functional anticholinergic activity of drugs classified as strong and moderate on the anticholinergic burden scale on bladder and ileum. *Basic Clin Pharmacol Toxicol* 2024; **135**: 451-63.
18. Yamada S, Ito Y, Nishijima S, Kadekawa K, Sugaya K. Basic and clinical aspects of antimuscarinic agents used to treat overactive bladder. *Pharmacol Ther* 2018; **189**: 130-48.
19. Takasu T, Ukai M, Sato S, Matsui T, Nagase I, Maruyama T, et al. Effect of (R)-2-(2-Aminothiazol-4-yl)-4'-(2-[(2-hydroxy-2-phenylethyl)amino]ethyl] Acetanilide (YMI178), A novel selective β_3 -adrenoceptor agonist, on bladder function. *J Pharmacol Exp Ther* 2007; **321**: 642-47.
20. Chapple CR, Kaplan SA, Mitcheson D, Kleckal J, Cummings J, Drogendijk T, et al. Randomized double-blind, active-controlled phase 3 study to assess 12-month safety and efficacy of mirabegron, a β_3 -adrenoceptor agonist, in overactive bladder. *Eur Urol* 2013; **63**:296-305, 2013.
21. Michel MC, Korstanje C; β_3 -adrenoceptor agonists for overactive bladder syndrome: role of translational pharmacology in a repositioning clinical drug development project. *Pharmacol Ther* 2016; **159**: 66-82.

22. Di Salvo J, Nagabukuro H, Wickham LA, Abbadie C, DeMartino JA, Fitzmaurice A, et al. Pharmacological characterization of a novel beta₃ adrenergic agonist, vibegron: evaluation of antimuscarinic receptor selectivity for combination therapy for overactive bladder. *J Pharmacol Exp Ther.* 2017; **360**: 346-55.
23. Dehvari N, da Silva Junior ED, Bengtsson T, Hutchinson DS; Mirabegron: potential off target effects and uses beyond the bladder. *Br J Pharmacol* 2018; **175**: 4072-82.
24. Alexandre EC, Kiguti LR, Calmasini FB, Silva FH, da Silva KP, Ferreira R, et al. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β_3 -adrenoceptor activation and α_1 -adrenoceptor blockade. *Br J Pharmacol* 2016; **173**: 415-28.
25. Calmasini FB, Cândido TZ, Alexandre EC, D'Ancona CA, Silva D, de Oliveira MA, et al. The beta-3 adrenoceptor agonist, mirabegron relaxes isolated prostate from human and rabbit: new therapeutic indication? *Prostate* 2015; **75**: 440-7.
26. Mo W, Michel MC, Lee XW, Kaumann AJ, Molenaar P. The β_3 -adrenoceptor agonist mirabegron increases human atrial force through β_1 -adrenoceptors: an indirect mechanism? *Br J Pharmacol* 2017; **174**: 2706-15.
27. Takusagawa S, Miyashita A, Iwatsubo T, Usui T. In vitro inhibition and induction of human cytochrome P450 enzymes by mirabegron, a potent and selective β_3 -adrenoceptor agonist. *Xenobiotica* 2012; **42**:1187-96.
28. Takusagawa S, Yajima K, Miyashita A, Uehara S, Iwatsubo T, Usui T; Identification of human cytochrome P450 isoforms and esterases involved in the metabolism of mirabegron, a potent and selective β_3 -adrenoceptor agonist. *Xenobiotica* 2012; **42**: 957-67.
29. Department of Health Therapeutic Goods Administration: Australian Public Assessment Report for Mirabegron. 2014: [Online] Available at: <https://www.tga.gov.au/auspar/auspar-mirabegron>.
30. Groen-Wijnberg M, van Dijk J, Krauwinkel W, Kerbusch V, Meijer J, Tretter R, et al. Pharmacokinetic interactions between mirabegron and metformin, warfarin, digoxin or combined oral contraceptives. *Eur J Drug Metab Pharmacokinet* 2017; **42**: 417-29.
31. Yamada S, Chimoto J, Shiho M, Okura T, Morikawa K, Wakuda H, et al. Possible involvement of muscarinic receptor blockade in mirabegron therapy for patients with overactive bladder. *J Pharmacol Exp Ther* 2021; **377**: 201-6.
32. Yamada S, Chimoto J, Shiho M, Okura T, Morikawa K, Kagota S, et al. Muscarinic receptor binding activity in rat tissues by vibegron and prediction of its receptor occupancy levels in the human bladder. *Int J Urol* 2021; **28**: 1298-303.
33. Rudmann DG; On-target and off-target-based toxicologic effects. *Toxicol Pathol* 2013; **41**: 310-4.
34. Chou CK, Liu YL, Chen Y, Huang P-J, Tsou P-H, Chen C-T, et al. Digital receptor occupancy assay in quantifying on- and off-target binding affinities of therapeutic antibodies. *ACS Sens* 2020; **5**: 296-302.
35. Cernecka H, Kersten K, Maars Singh H, Elzinga CR, de Jong IJ, Korstanje C, et al. β_3 -adrenoceptor-mediated relaxation of rat and human urinary bladder: roles of BKCa channels and rho kinase. *Naunyn Schmiedebergs Arch Pharmacol* 2015; **388**: 749-59.
36. Svalø J, Nordling J, Bouchelouche K, Andersson KE, Korstanje C, Bouchelouche P; The novel β_3 -adrenoceptor agonist mirabegron reduces carbachol-induced contractile activity in detrusor tissue from patients with bladder outflow obstruction with or without detrusor overactivity. *Eur J Pharmacol* 2013; **699**: 101-5.
37. Krauwinkel W, van Dijk J, Schaddelee M, Eltink C, Meijer J, Strabach G, et al. Pharmacokinetic properties of mirabegron, a β_3 -adrenoceptor agonist: results from two phase I, randomized, multiple-dose studies in healthy young and elderly men and women. *Clin Ther* 2012; **34**: 2144-60.
38. Igawa Y, Aizawa N, Michel MC. β_3 -Adrenoceptors in the normal and diseased urinary bladder-what are the open questions? *Br. J. Pharmacol* 2019; **176**: 2525-38.
39. Dale PR, Cernecka H, Schmidt M, Dowling MR, Charlton SJ, Pieper MP, et al. The pharmacological rationale for combining muscarinic receptor antagonists and β -adrenoceptor agonists in the treatment of airway and bladder disease. *Curr Opin Pharmacol* 2014; **16**: 31-42
40. Huang R, Tamalunas A, Waideich R, Strittmatter F, Stief CG, Hennenberg M. Inhibition of full smooth muscle contraction in isolated human detrusor tissues by mirabegron is limited to off-target inhibition of neurogenic contractions. *J Pharmacol Exp Ther* 2022; **381**: 176-87.

41. Ito Y, Oyunzul L, Seki M, Fujino Oki T, Matsui M, Yamada S; Quantitative analysis of the loss of muscarinic receptors in various peripheral tissues in M1-M5 receptor single knockout mice. *Br J Pharmacol* 2009; **156**: 1147-53.
42. Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, et al. Quantitative analysis of binding parameters of [³H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. *Brain Res Mol Brain Res* 2005; **133**: 6-11.
43. Noronha-Blob L, Lowe V, Patton A, Canning B, Costello D, Kinnier WJ; Muscarinic receptors: relationships among phosphoinositide breakdown, adenylate cyclase inhibition, in vitro detrusor muscle contractions and in vivo cystometrogram studies in guinea pig bladder. *J Pharmacol Exp Ther* 1989; **249**: 843-51.
44. Matsui M, Griffin MT, Shehnaz D, Taketo MM, Ehlert FJ; Increased relaxant action of forskolin and isoproterenol against muscarinic agonist-induced contractions in smooth muscle from M₂ receptor knockout mice. *J Pharmacol Exp Ther*. 2003; **305**: 106-13.
45. Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, et al. The M₂ muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. *J Pharmacol Exp Ther* 2005; **313**: 368-78.
46. Ehlert FJ, Simon Ahn S, Pak KJ, Park GJ, Sangnil MS, Tran JA, et al. Neuronally released acetylcholine acts on the M₂ muscarinic receptor to oppose the relaxant effect of isoproterenol on cholinergic contractions in mouse urinary bladder. *J Pharmacol Exp Ther* 2007; **322**: 631-37.
47. Kelleher C, Hakimi Z, Zur R, Siddiqui E, Maman K, Aballéa S, et al. Efficacy and tolerability of mirabegron compared with antimuscarinic monotherapy or combination therapies for overactive bladder: a systematic review and network meta-analysis. *Eur Urol* 2018; **74**: 324-33.
48. Herschorn S, Chapple CR, Abrams P, Arlandis S, Mitcheson D, Lee K-S, et al. Efficacy and safety of combinations of mirabegron and solifenacin compared with monotherapy and placebo in patients with overactive bladder (SYNERGY Study). *BJU Int* 2017; **120**: 562-75.
49. Soliman MG, El-Abd S, El-Gamal OM, Raheem A A, Abou-Ramadan AR, El-Abd AS. Mirabegron versus solifenacin in children with overactive bladder: Prospective randomized single-blind controlled trial. *Urol Int* 2021; **105**: 1011-7.
50. Yamada S, Mochizuki M, Maruyama-Fumoto K, Kagota S, Shinozuka K. Additive effects of mirabegron on muscarinic receptor binding and on relaxation of cholinergic detrusor muscle contraction by antimuscarinics. *J Pharmacol Sci* 2025; **58**: 363-7.
51. Shin JH, Kim A, Choo M-S. Additional low-dose antimuscarinics can improve overactive bladder symptoms in patients with suboptimal response to beta 3 agonist monotherapy. *Investig Clin Urol* 2017; **58**: 261-6.
52. Sugaya K, Yamagami H, Nishijima S, Kadekawa K, Hizue M, Ito Y, et al. Effects of combined treatment with fesoterodine and mirabegron in a pelvic congestion rat model: Results from in vitro and in vivo functional studies. *Lower Urinary Tract Symptoms* 2020; **12**: 173-179.
53. Itsuka H, Tokuno T, Amada Y, Matsushima H, Katashima M, Sawamoto T, et al. Pharmacokinetics of mirabegron, a b₃-adrenoceptor agonist for treatment of overactive bladder, in healthy Japanese male subjects: Results from single- and multiple-dose studies. *Clin Drug Investig* 2014; **34**: 27-35.
54. Eltink C, Lee J, Schaddelee M, Zhang W, Kerbusch V, Meijer J, et al. Single dose pharmacokinetics and absolute bioavailability of mirabegron, b₃-adrenoceptor agonist for treatment of overactive bladder. *Int J Clin Pharm Ther*. 2012; **50**: 838-49.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.