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Abstract 

The paper presented here examines the decomposition of hydrazine on the surface of single-
crystalline germanium at 650oC, the kinetics of the nitride formation process at ≥650°C was studied 
using a microgravimetric method and the question of the possibility of using α-Ge3N4 and mixtures 
of α- and β-Ge3N4 as a photocatalyst was considered. 
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1. Introduction 

Germanium nitride Ge3N4 finds application in micro- and nanoelectronics, photoluminescence, 
energy storage, photocatalysis [1–10] and others. Usually Ge3N4 is obtained by interaction of 
ammonia with elemental germanium at (650-700) oC or its dioxide (GeO2) at (700-750) oC:   

3Ge+4NH3⟶ Ge3N4+6H2,  (1) 
3GeO2+4NH3⟶ Ge3N4+6H2O.  (2) 
According to reaction (1), the α-modification of nitride is formed, and according to reaction (2), 

the β-modification (*). 
An original method is also the use of hydrazine vapors [16]:  
3Ge+2N2H4⟶Ge3N4+4H2. (3) 

 (*) Germanium nitride exists in the form of several crystal modifications: α-, β-, γ-, δ- Ge3N4 [11–13]. 
The t-, m-, o-modifications of nitride are also theoretically discussed [14,15] (α, β, δ – hexagonal, γ – 
cubic, t – tetragonal, m – monoclinic, o – orthorhombic syngony). At normal temperatures and 
pressures, only the α- and β-modifications are stable.  

Bot modifications consist of Ge(N4) tetrahedra and crystallize in hexagonal syngonia. The 
difference between them lies in the arrangement of Ge(N4) tetrahedra along the "c" axis (Figure 1). 
The values of elementary cell parameters from various literature data are given in Table 1. Figure 2 
shows their elementary cells. 

 
α-Ge3N4β-Ge3N4 

(a) (b) 
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Figure 1. (a) - Triplets of Ge(N4) tetrahedra (in the center - Ge, on the peaks - N) and (b) - arrangement of 
tetrahedra along the "c" axis (vertical direction). 

Table 1. − Parameters of elementary cells of α- and β-Ge3N4. 

 
modif. 
 
 
par.,Å 

 
α-Ge3N4 

 

 
  β- Ge3N4 

 

a 8.20211,7.98512  8.03811, 7.82612, 8.11913  
c 5.9411, 5.78612  3.07411,3.99312 , 3.10413  

(a)  

 

 

 

O – Ge● – N 

 

(b)   

 

 

Figure 2. Elementary cells of germanium nitride: (a) α-Ge3N4, (b) β-Ge3N4. 

Below it will be shown that at 650°C hydrazine in the presence of germanium decomposes 
according to the scheme: 

2N2H4→2NH3+N2+H2. (4)  
It is known that at experimentally achievable temperatures and pressures, nitrogen does not 

interact with germanium, and the Ge-H bond is broken below 650°C. Therefore, in hydrazine vapors, 
nitride is actually formed according to scheme (1). Since germanium is an active catalyst for the 
decomposition reaction of hydrazine, this issue will be discussed in detail. 

2. Materials & Reagents  

Сommertial hydrazine-hydrate containing 50 mol.% (36 wt.%) water was distilled using the 
Raschig's method with improvement. In particular, before distillation, it was boiled with NaOH in 
an inert atmosphere of nitrogen at a temperature of 120°C for two hours. Hydrazine purified in this 
way had a density of ρ ≅ 1.0024 g/cm3 and a refractive index of  nD

20 ≅  1.4705. According to the 
literature, this latter value corresponds to 100% N2H4. However, this can be considered not entirely 
correct.  

Plates of single-crystalline germanium doped with antimony (charge carrier concentration 
n ≅ 2∙ 1014cm-3) had a resistivity of ≅ 35 Ohm∙ cm. The crystallographic orientation of Ge plates are 
(111) or (100). They were previously degreased in boiling toluene, etched in liquid etchant 
HF:HNO3:CH3COOH=1:15:1 for 4-5 minutes and washed in running distilled water. 
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3. Results and Discussion 

3.1. Decomposition of Hydrazine on the Surface of Single-Crystalline Germanium 

Hydrazine is one of the most chemically active substances - a strong reducing agent. He has 
wide application in various fields of industry, technology, medicine, etc. and has been intensively 
studied both previously and currently [14–25]. Liquid N2H4 is very hygroscopicand has a noticeable 
ability to absorb oxygen and carbon dioxide from the air. It is called “high purity” when the water 
content does not exceed 1 wt.% and “ultra-pure” - with a maximum of 0.5 wt.% H2O. The 
concentration of water in hydrazine is estimated by the density, melting point, or refractive index of 
the mixture. However, literature data on these parameters are different, due to the difficulty of 
accurately determining the physical characteristics of pure hydrazine (*). 

Hydrazine is easily decomposed by heat and radiation, especially in the presence of catalysts 
[35–38]. The general form of this reaction is given by the equation: 

3N2H4→4(1-x) NH3+(1+2x) N2+6xH2. (5) 
(*) According to various authors, the density of liquid hydrazine at 25oC is 1.0045, 1.0036 and 

1.0024, 1.008 g/cm3 at 23oC. The melting point of the system N2H4/H2O: 1, 1.4, 1.53, 1.6-1.7, 1.8, 1.85 
and 2oC [26–28]. 

 Depending on external conditions (temperature, pressure, catalyst, electromagnetic radiation, 
electric discharge, etc.) 0≤ х≤ 1(*). The catalytic decomposition of hydrazine on the surface of 
germanium has been studied relatively littleand there is data when carrying out the reaction up to 
80°C. In early work [32], powders of Ge of n- and p-type conductivity were used. It was found that 
the decomposition products were ammonia and nitrogen:  

3N2H4→NH3+N2.(6) 
The type of conductivity did not affect the catalytic properties. 
Figure 3a shows the kinetic curves of the accumulation of hydrogen and ammonia at 650°C. It 

can be seen that the amount of ammonia is constant in the absence of germanium, and in its presence 
gradually decreases. The hydrogen content in the presence of Ge increases sharply, and in its absence 
it first increases and then decreases. The resulting ammonia corresponds to an equimolar amount of 
chemisorbed hydrazine. As a result, the total change of pressure (Figure 3b) is determined only by 
the decomposition reaction. 

 
(a) (b) 

Figure 3. (a) Kinetic curves of hydrogen (1) and ammonia (2) accumulation during the decomposition of 
hydrazine in the presence of germanium (●, ▲) and without it (o, ∆); (b) kinetic curve of the total change of 
pressure of gaseous products at 650oC. 

Thermodynamic calculation of the change of free energy showed that reaction (5) at x = 0.25 (i.e. 
reaction (4)) has almost the same probability as reaction (6): change in Gibbs free energy ∆G≅220.5 
and ≅ 222.6 kJ/mol respectively (**). However, the discovered fact of hydrogen evolution gives 
preference to reaction (4). 
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(*) On alkaline catalysts x=1, on some semiconductor catalysts (Ga, Ga2Se3 and others), as well as 
on some metals (Te, Pt) x=0, on some semiconductors (V2O5, Ga2Te3 and others), as well as on acid 
catalysts 0<x<1, during decomposition using a spark x = 0.38, and during bombardment with α-
particles x = 0.12-0.22 [29–31]. 

(**) The estimate of ∆G should be considered approximate since a change in pressure occurs in the 
reaction area. 

A sharp increase of the amount of hydrogen and a decrease of the amount of ammonia in the 
presence of germanium can be associated with a heterogeneous reaction (1).  

The study of high-temperature decomposition of hydrazine was also carried out using IR 
absorption spectra. Figure 4 shows the IR spectra of N2H4 vapor, demonstrating the dynamics of its 
decomposition at 650°C. Curve 1 corresponds to hydrazine vapor, curves 2 and 3 to hydrazine heated 
for 15 and 30 minutes, and curve 4 to pure ammonia. These spectra indicate that the decomposition 
of hydrazine at 650°C occurs mainly during the first 15 minutes and is completely completed within 
30 minutes. 

 

Figure 4. Dynamics of hydrazine decomposition at 650oC in presence of germanium. 

3.2. Formation of Nitride on Germanium Surface 

At temperatures ˃650°C, nitride Ge3N4 is formed in hydrazine vapor on the surface of 
germanium, and by registration mass change of the sample using the microgravimetric method, the 
following processes are observed16: first, an increase of mass occurs due to the accumulation of 
hydrazine and its decomposition products on the surface, then the mass of the sample decreases due 
to etching of Ge with contained in hydrazine  water vapors, and then observes its gradual increase 
due to formation of Ge3N4. 
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Figure 5. The kinetic curves of the interaction of hydrazine vapors with germanium at 700oC: 1 - the process 
carried out immediately after distillation, 2 - after two weeks, 3 - after a month. 

It should be noted that when freshly distilled hydrazine was stored in a special ampoule under 
vacuum, over fairly long periods of time (two weeks, a month), we did not detect any change in 
determining of the refractive index within the measurement accuracy. However, a significant 
difference in the nitridation kinetics was observed (Figure 5). From this figure, in particular, one can 
see the difference in the etching rates of the germanium surface at the same temperature33. This can 
be attributed to the gradual humidization of hydrazine, despite precautions. Really, under the above 
conditions, the following occurs: first, β-Ge3N4 is formed, and then traces of α-modification are 
observed in the nitride. When hydrazine is specially hydrated, the amount of α-Ge3N4 increases and 
it is finally possible to obtain it in pure form34. 

It should also be noted that the initial increase of mass (Figure 5) is 2-3 orders of magnitude 
greater than is typical for physical adsorption. This can be associated with the accumulation of polar 
molecules of hydrazine and water with high dipole moments (~2 D35,36) on the germanium surface. 

One can also take into account the existence of hydrazine in the imide tautomeric form: 
H2N-NH2↔N−H-N+H3. 
The bipolar imide form of hydrazine is characterized by a pronounced ability to associate 

molecules and a strong donor property to atoms with unfilled d- and f-shells, especially in substances 
with a small band gap (for example, germanium). 

The above can be confirmed by the results of supplementary experiments on the interaction of 
germanium with ammonia, as with a molecule of the amine form. At the initial stage of this reaction 
at (500-700) °C, we observed an increase in the sample by (2-4) µg/cm2, which is characteristic of the 
process of physical adsorption of neutral molecules. 

3.3. The Possibility of Using of Germanium Nitride as a Photocatalyst in the Conversion of Carbon Monoxide 
to Dioxide  

The role of photocatalysis in natural photosynthesis, energy, biotechnology, ecology, other fields 
of science and technology, or in solving household problems is widely known. Among the 
compounds that are studied to achieve the catalytic effect by visible or ultraviolet radiation, non-
oxide materials occupy an important place. Among them are simple (binary) nitrides: C3N4 [37–41], 
GaN [42–44], TiN [45,46], Ta3N5 [47,48], HfN [49,50], Si3N4 [51,52], Ge3N4.   

The essence of photocatalysis is to increase of the rate or excitation of chemical reactions under 
the influence of light in the presence of substances that absorb light quanta and participate in the 
chemical transformations of these substances, repeatedly entering into intermediate interactions with 
them and regenerating their chemical composition after each cycle. (A simplified diagram of the 
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process is shown in Figure 6.) All this became possible after the fundamental works of A. Fujishima 
[53–57]. 

 

Figure 6. − Schematic representation of the photocatalytic process of water splitting10. 

As noted in the introduction, germanium nitride was successfully tested using photoradiation 
in the process of water splitting. The authors of the cited works used β-Ge3N4 doped with RuO2.  

The authors of this paper are currently conducting experiments to determine the photocatalytic 
activity of Ge3N4 for converting CO into CO2. We use α-Ge3N4 and mixtures of α- and β-modifications 
doped with platinum or palladium. It is evident from the Figure 2 that this modification of the nitride 
is capable of dissolving the dopant in itself more effectively (*). 

4. Conclusions 

At ≥650°C hydrazine decomposes on the surface of single-crystalline germanium according to 
the scheme: 2N2H4→2NH3+N2+H2. A sharp increase in the amount of hydrogen and a decrease in the 
amount of ammonia in the presence of germanium is observed. This is due to a heterogeneous 
reaction: 3Ge+4NH3→Ge3N4+6H2. The phase composition of solid product of this reaction is an 
indicator of the degree of humidity of hydrazine: in pure hydrazine vapors, β-Ge3N4 is formed on the 
surface of germanium, and as water is added, a mixture of α- and β-modifications is formed until 
pure α-Ge3N4 is formed. The question of the possibility of using α-Ge3N4 and mixtures of α- and β-
Ge3N4 as a photocatalyst was considered. 

(*) The problem of converting toxic CO into harmless CO2 is a very urgent task58-66. Purification of 
atmospheric air from harmful substances is of great importance for human health. One of the main 
sources of air pollution are internal combustion engines, namely cars. The most toxic component of 
their exhaust gases is precisely carbon monoxide. CO is especially dangerous because, due to its 
physical properties, it enters people's homes or workplaces more easily than other toxic exhaust gas 
components. It is odorless and cannot be detected by the senses. The most effective means of 
protecting residential and workplaces of people from carbon dioxide are cleaning devices containing 
photocatalysts, which, under the conditions of the use of an appropriate catalyst and natural air 
convection, will effectively purify them from CO.  
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