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Abstract 

In light of the increasing complexity and heterogeneity of global compliance regimes, recent research 
has emphasized the necessity of enhancing organizational compliance capabilities as a strategic lever 
to mitigate enterprise risk exposure. Kawtar and Khadija highlighted that effective compliance 
governance correlates positively with operational resilience and regulatory adaptability, particularly 
in volatile markets. Building upon this foundation, the present study investigates how variations in 
compliance maturity translate into quantifiable reductions in both the frequency and timing of major 
risk events within multinational corporations. Drawing on a cross-industry sample of 21 enterprises 
from the manufacturing, telecommunications, and financial services sectors, a Compliance Maturity 
Index (CMI) is developed using the two-parameter logistic model within the Item Response Theory 
framework. Governance configuration paths leading to risk suppression are subsequently identified 
through fuzzy-set Qualitative Comparative Analysis (fsQCA), and the causal relationships are 
validated using hierarchical Bayesian Logit models and Cox proportional hazards models, consistent 
with the causal inference strategy proposed by Bley et al. Empirical analysis reveals that incremental 
improvements in compliance maturity are associated with a 32% decline in major compliance 
violations and a 22% increase in third-party partner satisfaction ratings. Among the identified 
configurations, the most robust governance pathway—characterized by elevated CMI, rigorous 
external audits, active senior management participation, and comprehensive digital dashboard 
coverage—exhibits a configuration consistency of 0.86 and coverage of 0.61. This configuration also 
achieves a pooled hazard ratio of 0.63, indicating delayed onset of compliance failures. These findings 
underscore the critical role of compliance maturity as a mediating mechanism within risk governance 
architectures and provide evidence-based guidance for designing resilient compliance strategies 
in complex operational environments.

Keywords: compliance maturity; fsQCA; hierarchical Bayesian; event incidence; governance 
configuration 

1. Introduction

Global compliance regulations have become increasingly stringent in recent years. At the same
time, multinational corporations face growing complexity in cross-border operations. Under these 
conditions, a critical challenge in organizational governance is how to accurately measure compliance 
capabilities and translate them into tangible risk mitigation outcomes. However, traditional 
compliance assessments remain limited. They often rely on static scoring methods and fail to account 
for the dynamic mechanisms through which governance capabilities reduce risk. These approaches 
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also lack systematic analysis of how multiple governance factors interact to form effective 
configurations. In this context, compliance maturity should no longer be viewed merely as an isolated 
capability indicator. Instead, it functions as a key intermediary that activates governance 
performance and strengthens risk control mechanisms. Therefore, there is a growing need for a new 
analytical framework—one that combines measurability, transferability, and causal interpretability. 
Such a framework should link governance structures, resource allocation, and risk response 
strategies. It must also address the limitations of prior research, including fragmented indicators, 
one-dimensional models, and a lack of configurational thinking. This study responds to that need by 
proposing an integrated approach that connects compliance maturity with governance pathways and 
risk outcomes. 

2. Research Design 

2.1. Research Framework and Hypotheses 

To systematically explore how compliance maturity translates into risk reduction through 
organizational configuration mechanisms, this study constructs a multi-level research framework 
integrating three phases: measurement construction, configuration identification, and causal 
evaluation. It emphasizes deriving governance feature combinations from latent variable scales and 
testing their explanatory power for risk event occurrence rates. First, based on the two-parameter 
model (2PL) within Item Response Theory (IRT), the Compliance Maturity Index (CMI) is defined. A 
latent hierarchical sequence is constructed using dual-dimensional parameters of item discrimination 
and difficulty, while controlling for equivalence differences across industries [1]. Second, fuzzy set 
qualitative comparative analysis (fsQCA) is employed to determine whether governance variables—
including ʺsenior management involvement, collaborative network density, audit intensity, and 
digital management toolsʺ—form sufficient condition combinations under specific configurations. 
Finally, a hierarchical Bayesian Logit model is coupled with a Cox proportional hazards model to 
analyze the relationship between configurations and the frequency/timing of risk events, forming a 
complete causal inference chain. Based on this logic, the following core hypotheses are proposed: H1: 
Higher compliance maturity levels lead to more significant risk mitigation; H2: High CMI effectively 
suppresses risk events only under specific configuration combinations. 

2.2. Sample Selection and Data Collection 

To ensure the studyʹs scalability and representativeness across horizontal industry comparisons 
and vertical risk evolution, the sample encompasses three major sectors: manufacturing, 
telecommunications, and financial services. The final dataset includes annual compliance audit 
records, governance structure documents, and major risk event notification logs from 21 
multinational corporations. The specific industry and geographic distribution is shown in Table 1. 
The sampling strategy employed a multi-stage nested screening approach. The first stage identified 
independent operating entities with compliance disclosure obligations over the past five years that 
had not undergone mergers or acquisitions, using public databases such as UNCTAD and 
Bloomberg. The second stage integrated industry association data and secondary audit materials to 
perform structured recoding and supplementation of governance variables. Data collection primarily 
employed a hybrid approach of ʺgovernance questionnaire coding + document mining + risk event 
chain annotation.ʺ Cross-source data standardization was completed prior to CMI construction to 
ensure item homogeneity in IRT parameter estimation [3]. Sensitive variables such as external audit 
deficiencies and event trigger times underwent de-identification calibration. Risk event labels were 
validated through double-blind consistency checks, achieving a κ coefficient of 0.84. To support 
subsequent modeling, all data were uniformly formatted into a firm-year structure as the foundation 
for variable operationalization. 
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Table 1. Distribution of Sample Enterprises by Industry and Data Source Composition. 

Industry Type 
Number of 

Companies 
Primary Data Source 

Risk Event Sample 

Size 

Manufacturing 8 
Annual reports, compliance audit reports, 

industry white papers 
53 

Telecommunications 

Industry 
6 

Operator Governance Information Repository, 

Compliance Announcement Platform 
41 

Financial Services 7 
Financial Regulatory Disclosure System, 

Corporate Governance Questionnaire 
49 

2.3. Variable Design and Operationalization 

The variable design in this study adheres to the principle of multidimensional hierarchical 
matching and is operationalized in accordance with the requirements for causal modeling 
identifiability. The dependent variables focus on two dimensions: the probability of occurrence and 
the timing of major financial misconduct events, which are used to construct the Logit risk function 
and Cox proportional hazards model, respectively. Event coding follows the ʺmajor violation events 
(e.g., financial restatements, anti-corruption investigations, audit failures)ʺ standard under the GICS 
industry classification, assigned as a binary variable and a time variable [4]. Partner satisfaction is 
incorporated as an external governance perception indicator, derived from the standardized mean of 
third-party industry ratings and questionnaire scores. The core explanatory variable is the 
Compliance Maturity Index (CMI), estimated via the IRT-2PL model. This continuous latent variable 
ranges from 0 to 1, reflecting an organizationʹs overall capability across 15 governance items. 
Configuration condition variables were designed as fuzzy set variables per fsQCA requirements, 
including senior management involvement, collaborative network density, external audit frequency, 
and digital dashboard coverage. All were normalized to 0–1 via quantile calibration. Control 
variables encompassed firm size (log employee count), industry dummy variables, and regional risk 
indices, embedded as random effects under hierarchical structures in the multilevel Bayesian model 
[5]. 

3. Research Methodology 

3.1. IRT-2PL Model Construction 

To achieve a structured quantitative representation of corporate compliance governance 
capabilities, this study constructs a Compliance Maturity Index (CMI) based on the two-parameter 
logistic model (2PL) within Item Response Theory (IRT). The 2PL model simultaneously estimates 
item discrimination parameters (α) and difficulty parameters (β), enabling the derivation of each 
respondentʹs (enterpriseʹs) position on the latent ability dimension θ within a Bayesian posterior 
framework [6]. Its core formal expression is as follows: 

)(1
1)(

iji bajij e
P −−+

= θθ
（1） 

where )( jijP θ  denotes the response probability of enterprise j on governance item i, ia  represents 

the discrimination parameter of item i, ib   is the difficulty parameter, and jθ
  indicates the 

compliance capability level of enterprise j. The model construction employs a joint maximum 
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likelihood and expectation maximization estimation strategy. It incorporates DIF (Differential Item 
Functioning) tests to assess equating bias across industry groups and validates the scaleʹs 
discrimination power in the medium-to-high capability range through information function 
distribution curves [7]. Item coding sources were structured extraction from governance documents 
and expert review. The designed dimensions encompassed four key areas: ʺSenior Management 
Involvement,ʺ ʺProcess Standardization,ʺ ʺExternal Oversight,ʺ and ʺInformation Transparency,ʺ 
ensuring latent variable θ possesses a governance-semantic interpretive space. 

3.2. fsQCA Configuration Analysis 

fsQCA employs a direct calibration method to map the multi-path mechanism of ʺCMI—
governance factor configuration—low risk,ʺ converting Compliance Maturity Index (CMI), Top 
Management Involvement (TMI), Collaborative Network Density (CND), External Audit Intensity 
(EAI), and Digital Dashboard Coverage (DKC) into fuzzy set membership degrees µ ∈ [0,1]. Anchors 
are jointly determined by sample quantiles and regulatory thresholds, with cross-industry 
equivalence calibrated using prior IRT-DIF test results [8]. Based on this, a truth table is constructed 
using case frequency and consistency thresholds to resolve contradictory rows and finite diversity. 
Intermediate solutions are obtained via directional expectations, forming interpretable simplified 
terms. Necessary and sufficient condition tests follow standard subset relationship metrics: 





 =≤=≤

k Yk

k YkXk
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μ
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where Xkμ  denotes case kʹs membership in configuration X, Ykμ  denotes its membership in the 
ʺlow-riskʺ outcome set, and k is the case index. To facilitate subsequent metrological testing, 
configuration scores and path dummy variables will be input as hierarchical/interaction terms in 
hierarchical Bayesian models and as time-varying covariates in Cox models. The analytical workflow 
and variable interfaces are visualized in Figure 1. 

 

Figure 1. Configuration Analysis Flow and Causal Path Mapping Diagram. 

3.3. Hierarchical Bayesian Model 

To map ʺCMI-configurationsʺ to violation occurrence frequency while avoiding small-sample 
overfitting, a hierarchical Bayesian Logit model was designed. This model partially aggregates at the 
enterprise and industry levels while explicitly incorporating IRT measurement uncertainty and 
fsQCA path scores into linear prediction terms [9]. The model structure is: 

vvuPathZCMIpitpBernoulliy isiiititisititit ++++++= ΤΤ
)()(,10)(log),(~ δγββ

（3） 
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where ity  denotes the critical violation indicator for firm i in year t; itCMI  derives from the IRT-

2PL posterior (reflecting measurement error via multiple sampling); iPath  represents the fsQCA 

configuration score/virtual term; itZ  denotes control variables; iu , sv , tw  denote firm, industry, 
and year random effects, respectively. To achieve partial aggregation across industries, a hierarchical 
prior is set for the CMI effect: 

),0(~),,0(~),,0(~),,(~ 2222
1,1 wtvsuis NwNvNuN σσστββ β （4） 

Coefficients adopt weak prior information (e.g., β ~ N(0,52), σ ~ half-Cauchy(0,2.5)), using 

HMC/NUTS sampling. Convergence and model validity are ensured via R̂  ≤ 1.01, effective sample 
size, and posterior prediction tests. To interface with Cox models, posterior samples of the linear 

predictor )(log ititit p=η  are input as time-varying covariates. 

3.4. Cox Proportional Hazards Model 

To further elucidate the mechanism by which compliance maturity and governance 
configurations influence the ʺtime to occurrenceʺ of non-compliance events, a time-to-event analysis 
framework based on the Cox proportional hazards model is constructed. This framework focuses on 
the time-dependent effects of CMI levels and fsQCA path variables within the ʺhigh-risk windowʺ 
[10]. Unlike frequency modeling, this section examines the delayed nature of risk triggering. 
Therefore, a Cox model using partial likelihood estimation is employed to model the risk trigger rate, 
expressed as: 

))(exp()()( 0 txthxth iii
Τ⋅= β

（5） 

where 
)( ii xth

 denotes the conditional hazard function for firm i at time t, )(0 th  represents the 

baseline hazard function, and )(txi   incorporates time-dependent CMI posterior estimates, 
configuration state dummy variables, control terms, and firm-level time-varying covariates. To 
capture intertemporal dependencies, a rolling window interpolation strategy is designed to extract 
lagged responses for CMI and fsQCA composite measures. The temporal covariate structure, 
illustrated in Figure 2, employs a bidirectional dynamic covariate injection mechanism to distinguish 
temporal tension between prior governance improvements and immediate audit exposure. 

Additionally, a frailty term vi~Gamma(θ,θ) captures firm-level unobserved heterogeneity, and a 
joint posterior path with the linear predictor ηit is constructed to integrate causal pathways across models. 

Ultimately, the model outputs survival functions )(ˆ tS , risk ratio estimates, and time-dependent 
sensitivities to support evaluations of CMI improvement trajectories and intervention window strategies. 

 
Figure 2. Cox Modeling Structure Diagram. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 November 2025 doi:10.20944/preprints202511.0678.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.0678.v1
http://creativecommons.org/licenses/by/4.0/


 6 of 8 

 

4. Empirical Analysis 

4.1. CMI Measurement Results 

Dual-parameter estimation results for 15 governance indicators using the IRT-2PL model show 
that item discrimination parameters (α) cluster between 0.86 and 2.12, with a mean of 1.41, indicating 
strong overall scale discrimination. Difficulty parameters (β) range from −0.78 to 1.63, covering the 
capability spectrum from basic to advanced compliance levels. The item information function 
distribution shown in Figure 3 indicates that measurement precision peaks within the CMI range of 
0.4 to 0.85, meeting the requirements for identifying high-maturity pathways in subsequent models. 
Cross-industry DIF tests revealed marginal deviations (p&lt;0.05) for only two indicators between 
manufacturing and financial firms, with all others passing equivalence tests. This ensures CMIʹs 
transferability across three industries. Post-hoc estimates show continuous distributions of enterprise 
CMI scores, with marginal reliability at 0.78—meeting high-dimensional latent variable modeling 
requirements. Further grouping tests revealed that for each quintile increase in CMI, the annualized 
occurrence rate of non-compliance events in the corresponding enterprise sample decreased by an 
average of 32%, while partner satisfaction scores increased by an average of 22%. This provides a 
stable foundation of explanatory variables for subsequent fsQCA path analysis and Cox risk response 
modeling. 

 

Figure 3. CMI Item Parameters and Measurement Interval Information Strength Map. 

4.2. fsQCA Analysis Results 

Based on fsQCA analysis, three low-risk sufficient condition paths with high consistency and 
coverage were identified. Path A (ʺHigh CMI × Strong External Audit × Senior Management 
Involvement × Full Digital Dashboard Coverageʺ) demonstrated optimal performance with a 
consistency of 0.86 and an original coverage of 0.61, indicating its ability to effectively explain the 
governance mechanism combinations of most low-risk sample enterprises. Path B exhibits 
ʺModerate-High CMI × Extremely High Collaborative Network Density × Moderate Audit 
Frequency,ʺ demonstrating governance capabilities that partially compensate for insufficient CMI 
under enhanced network embeddedness. Path C is characterized by ʺHigh CMI × Low Collaborative 
Density × Extremely Strong External Audit,ʺ revealing the independent robustness of audit intensity 
in the absence of horizontal governance coordination. All paths passed necessary condition analysis, 
with high CMI and external audit intensity serving as shared core conditions. This further validates 
that CMIʹs indirect impact on risk mitigation requires configuration mediators to take effect. As 
shown in Figure 5, the path mapping diagram clearly presents the intersection structure and 
distribution weights of the three configuration types within the sample space, providing a basis for 
defining path variables in subsequent hierarchical Bayesian and Cox models. 
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4.3. Risk Impact Effect 

After integrating fsQCA paths and CMI indicators into hierarchical Bayesian and Cox models, 
results show that firms in the ʺHigh CMI + Path Aʺ group exhibit significantly lower major violation 
incidence than other groups. The average Logit regression coefficient is −1.73 (95% CI: −2.41, −1.05), 
with a combined hazard ratio HR = 0.63, indicating a dual suppression effect of configuration on both 
risk frequency and velocity. Specifically, in time-to-event analysis, Path A correspondingly delayed 
the average trigger time for violation events by approximately 8.2 months, demonstrating that high-
maturity governance mechanisms possess a risk lag effect. Although Path B exhibited limited control 
effects on frequency (HR≈0.81), it contributed to extending event timelines, indicating that 
collaborative networks can mitigate sudden risk fluctuations. Path C exhibits short-term suppression 
under high-frequency audit constraints, making it suitable for scenarios with dense regulatory 
triggers. The ̋ Risk Impact Path Distribution Mapʺ in Figure 4 further illustrates the dual-dimensional 
risk reduction characteristics (frequency-time) across the three paths. Samples for Path A cluster in 
the low-frequency, long-cycle quadrant, forming a relatively stable risk response structure. This 
result validates that CMIʹs risk mitigation effect requires embedding within specific configurations, 
reinforcing the chained mechanism of ʺmaturity-path-effectiveness.ʺ 

 

Figure 4. Dual-Dimensional Risk Mitigation Mapping of Violation Frequency and Trigger Timing Across Three 
fsQCA Pathways. 

5. Conclusions 

The structural measurement of compliance maturity and configuration-based path identification 
provide a practical governance framework for multinational enterprises to mitigate risks. By 
integrating IRT-2PL scale construction, fsQCA pathway identification, and hierarchical Bayesian 
modeling, this study validates the applicability and robustness of the ʺmaturity-configuration-
outcomeʺ causal chain across multiple industries. Pathway Aʹs dual-dimensional reduction capability 
in frequency and timeliness particularly highlights the mediating value of configuration mechanisms. 
However, the sample coverage remains imbalanced in terms of industry and geographic distribution, 
limiting its extrapolation to extreme events or policy disturbance scenarios. The modelʹs depiction of 
dynamic evolutionary relationships among governance elements also requires further refinement. 
Future research may incorporate time-series fsQCA or dynamic Bayesian networks to expand path-
response evolution modeling. Simultaneously, integrating non-structural variables such as internal 
incentive mechanisms and governance culture into modeling could enhance the multidimensional 
interpretive framework for governance configurations and strengthen its guidance for risk 
management strategies in high-uncertainty environments. 
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