
Concept Paper Not peer-reviewed version

Monosemantic Feature Neurons: A

Sparse Autoencoding Layer for

Interpretable, Steerable Transformer

Features

Roger Dev *

Posted Date: 27 October 2025

doi: 10.20944/preprints202510.2064.v1

Keywords: monosemanticity; sparse autoencoder; interpretability; Transformer models; steerability

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4829680

Concept Paper

Monosemantic Feature Neurons: A Sparse
Autoencoding Layer for Interpretable, Steerable
Transformer Features
Roger Dev

Bellvue, CO, USA; devroger@yahoo.com

Abstract

Large Language Models achieve remarkable results but remain opaque due to dense, entangled
activations. We propose Monosemantic Feature Neurons (MFNs), a sparse autoencoding layer placed
inside Transformer blocks. MFNs encode residual streams into K-sparse codes, reconstruct them, and
blend them back into the model so that downstream computation depends on a sparse, interpretable
basis. Five complementary loss terms encourage reconstruction, sparsity, competition, stability, and
utility, biasing features toward monosemanticity. Unlike post-hoc sparse autoencoders, MFNs embed
a causally entangled bottleneck directly within Transformer computation, bridging the gap between
interpretability and train-time transparency. We outline falsifiable predictions and evaluation protocols
including probe purity, cross-seed alignment, and causal interventions. MFNs offer a path toward
interpretable, steerable, and safe “glass-box” Transformers.

Keywords: monosemanticity; sparse autoencoder; interpretability; Transformer models; steerability

1. Introduction
Large Language Models (LLMs) have revolutionized Natural Language Processing, yet their

internal representations remain opaque. Dense activations hinder debugging, alignment, and safety.
We propose Monosemantic Feature Neurons (MFNs): a sparse, interpretable bottleneck inside each
Transformer block that exposes human-readable features and enables fine-grained control while
remaining causally relevant to the model’s computation. This work is primarily an architectural
proposal rather than an experimental report. We present the design, mathematical formulation, and
falsifiable predictions for MFNs, but defer empirical results to future work. Our goal is to provide a
clear blueprint that the research community can implement, test, and refine, enabling collaborative
progress toward interpretable and steerable Transformer models.

This paper is intentionally positioned as a conceptual architecture proposal. Our goal is to
articulate a falsifiable design framework for embedding sparse, causally-entangled bottlenecks within
Transformer blocks. Rather than presenting experiments, we specify testable hypotheses and evaluation
criteria that can guide subsequent empirical work. The value of this contribution lies in the clarity and
falsifiability of the proposed framework, not in experimental confirmation.

2. Where MFNs Fit
For a sequence of length T, the residual stream is H ∈ RT×d; each row ht ∈ Rd is the contextual

representation of token t. MFNs act row-wise (token-wise) with shared parameters across tokens.

Data flow per token.

(1) Take token’s residual vector ht. (2) Encode to sparse feature vector zt. (3) Decode to
reconstruction ĥt = Dzt. (4) Replace or blend ht with ĥt before feeding to the MLP. This ensures that
downstream computation depends on the sparse representation, making features causally connected
to outputs.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2025 doi:10.20944/preprints202510.2064.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.2064.v1
http://creativecommons.org/licenses/by/4.0/

2 of 6

Figure 1. Data flow through a Transformer block with an MFN between attention and MLP. The MFN encodes
the residual into a sparse code, reconstructs to a residual, and blends it back before the MLP, yielding a sparse,
interpretable, and causally relevant representation.

3. MFN Architecture
Encoding.

z = TopK
(
ReLU(Weh + be), K

)
, z ∈ Rm (exactly K nonzeros). (1)

Reconstruction.

ĥ = Dz, ĥ ∈ Rd, D ∈ Rd×m (columns are feature directions). (2)

Blending.

hMLP = α ĥ + (1 − α)h, α ∈ [0, 1], α annealed toward 1 during training. (3)

Intuitively, ĥ expresses h as a sparse mixture of concept directions (e.g., “dog” ≈ animal + canine + pet
+ mammal).

4. Objective Function
We optimize a sum of five losses that together shape the residual space into a sparse, interpretable,

and task-relevant basis:
L = Lrecon + Lrate + Lcomp + Lstab + Lutil. (4)

4.1. Completeness (Recon Loss)

Lrecon = λr ∥h − ĥ∥2
2 = λr

d

∑
i=1

(hi − ĥi)
2. (5)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2025 doi:10.20944/preprints202510.2064.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.2064.v1
http://creativecommons.org/licenses/by/4.0/

3 of 6

Forces D to faithfully span the residual stream—much like a denoising autoencoder—so that ĥ cannot
simply add noise but must capture true information content.

4.2. Sparsity / Rate (Rate Loss)

Lrate = λrate KL
(

p̂(z) ∥ ρ
)
= λrate

m

∑
i=1

[
p̂i log

p̂i
ρ
+ (1 − p̂i) log

1 − p̂i
1 − ρ

]
. (6)

Keeps average firing probability near target ρ, preventing greedy neurons from dominating.

4.3. Competition (Comp Loss)

Lcomp = λcomp ∥Cov(z)− diag∥2
F = λcomp ∑

i ̸=j

(
Cov(z)ij

)2. (7)

Penalizes co-activation so distinct concepts separate.

4.4. Stability (Stab Loss)

Lstab = λstab ∥z − z̃∥2
2 = λstab

m

∑
i=1

(zi − z̃i)
2. (8)

Here z̃ is the code produced from a perturbed input h̃ (via noise, dropout, or light augmentation),
encouraging consistent firing for small perturbations.

Training note.

Train with two forward passes per batch—one clean, one perturbed—and a single backpropaga-
tion step on the summed losses.

4.5. Utility (Util Loss)

Ltask = − 1
T

T

∑
t=1

log pθ(xt | x<t), Lutil = λutil Ltask. (9)

Ensures that MFN features remain predictive of the next-token objective. Unlike the other losses,
this term backpropagates through both MFN parameters and Transformer weights, encouraging joint
co-adaptation.

4.6. Theoretical Rationale

Each loss term contributes a distinct regularization pressure that jointly sculpts a sparse, disen-
tangled, and task-relevant residual space: (i) Recon preserves manifold completeness by forcing D to
span the residual stream; (ii) Rate + Comp approximate InfoMax/ICA-style separation, encouraging
statistical independence of features; (iii) Stability smooths local manifolds and prevents representational
drift under small perturbations; (iv) Utility couples the representation to the next-token objective,
ensuring functional relevance. Together these forces form a theoretically sufficient but unproven recipe
for functional monosemanticity—a falsifiable claim for future experiments.

5. How Loss Terms Shape Monosemantic Features
The five loss components jointly define a system of representational pressures whose combined

equilibrium we term functional monosemanticity.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2025 doi:10.20944/preprints202510.2064.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.2064.v1
http://creativecommons.org/licenses/by/4.0/

4 of 6

Figure 2. Five pressures shaping monosemantic features. Completeness enforces faithful reconstruction; Rate and
Competition encourage balanced, disentangled features; Stability preserves feature identity across perturbations;
Utility ensures task relevance.

Table 1. Loss pressures and their effects.

Pressure Sub-loss name Effect on feature

Completeness Recon Loss Faithful reconstruction of residual h

Sparsity / Rate Rate Loss Balanced participation; prevents greedy neurons

Competition Comp Loss Disentanglement; distinct feature semantics

Stability Stab Loss Feature identity persists under noise/augmentations

Utility Util Loss Task relevance; predictive, steerable basis

6. Anticipated Benefits
• Interpretability: Each MFN ideally encodes a single concept.
• Steerability: Activations can be clamped or perturbed to modulate model behavior.
• Debuggability: Failing features can be inspected, pruned, or retrained.
• Regularization: Sparsity and competition may improve generalization.
• Reasoning Potential: Sparse concept chains may support symbolic-style reasoning.

7. Predictions and Evaluation

• (P1) Firing-rate calibration: Firing rates converge to target ρ with low overlap across units.

• (P2) Probe purity: Linear probes on z outperform probes on h for concept tests.

• (P3) Cross-seed alignment: Features align across random seeds (e.g., via CKA / matching).

• (P4) Causal interventions: Direct interventions on z predictably modulate attention heads / MLP
behavior.

• (P5) Transfer: Features transfer better across domains than post-hoc SAE baselines.

Evaluation protocols include mutual information, probe purity, stability analyses, causal inter-
ventions/ablations, and compute benchmarking. The table below summarizes quantitative targets
corresponding to each prediction.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2025 doi:10.20944/preprints202510.2064.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.2064.v1
http://creativecommons.org/licenses/by/4.0/

5 of 6

Planned Evaluation Metrics

Prediction Metric Baseline Success Criterion

P1 Mean firing-rate σ ≤ 0.05 Random SAE Calibration achieved
P2 Probe purity ↑ Post-hoc SAE ≥ 10% gain
P3 CKA alignment ↑ Different seeds r > 0.8
P4 Controlled z-intervention Perturb tests Predictable logit change
P5 Cross-domain transfer Fine-tuned SAE ≤ 5% perplexity loss

These metrics operationalize the hypotheses without supplying results, enabling future studies to
evaluate MFNs quantitatively and reproducibly.

8. Practical Considerations and Training Notes
Practical deployment of MFNs requires balancing interpretability goals against computational

efficiency and training stability. The following heuristics summarize the key engineering practices that
have proven useful in prototype implementations:

• Anneal K. Begin with a larger active set and gradually shrink toward the target sparsity.
• Two-pass stability. Use a smaller token subset for the perturbed pass to reduce compute overhead.
• Normalize D. Maintain unit-norm columns to avoid drift in feature magnitudes.
• Firing-rate floor. Prevent neuron death by enforcing a minimal activation probability.
• Gradient stability. Combine residual connections, LayerNorm, and ReLU for robust gradients.

The additional sparse encoding–decoding step introduces modest computational overhead that scales
linearly with token length. The two-pass stability term doubles per-batch forward cost during training
but not inference, and the total overhead is typically less than 10% for moderate K ≪ d, dominated
by base-model FLOPs. Efficient sparse-gather kernels and shared-parameter decoders can further
mitigate cost at scale.

9. Limitations and Risks
While MFNs provide a structured path toward interpretable Transformer computation, several

limitations and open questions remain:

• Incomplete disentanglement. MFNs encourage but do not guarantee fully independent features.
• Metric definition. Quantitative measures of monosemanticity should be defined prior to evaluation.
• Risk of overinterpretation. Sparse activations may appear human-meaningful without causal

validation.
• Sensitivity and trade-offs. Interpretability improvements may slightly reduce task accuracy

depending on sparsity pressure and competition strength.

Future work must quantify these trade-offs between interpretability and performance. Hyperpa-
rameter sensitivity (λ-weights, K, α, ρ) likely affects both sparsity structure and stability, motivating
systematic ablation studies. Empirical work is also needed to measure the robustness of monosemantic
features across model scales, datasets, and architectures.

10. Related Work
Post-hoc sparse autoencoders (SAEs) have recently become a central tool for mechanistic inter-

pretability. Anthropic’s Towards Monosemanticity (2023) and the subsequent Scaling Monosemanticity
study (2024) demonstrate that SAEs can uncover concept-aligned directions in Transformer activations,
but these models are trained after the base model and do not affect its live computation. Feature
editing approaches such as ROME and MEMIT [7,8] can manipulate stored knowledge, yet they modify
weights directly rather than exposing an interpretable latent basis.

Recent work on modular interpretability [4] and sparse feature learning [3,5] has deepened our
understanding of disentangled feature formation but still operates diagnostically. The Monet architecture

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2025 doi:10.20944/preprints202510.2064.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.2064.v1
http://creativecommons.org/licenses/by/4.0/

6 of 6

[6] moves toward train-time interpretability by introducing monosemantic experts in a Mixture-of-Experts
framework, although it differs fundamentally from the MFN concept: Monet routes tokens to experts,
whereas MFNs introduce a fixed, differentiable bottleneck inside each Transformer block.

MFNs therefore extend prior approaches by embedding the sparse encode–decode mechanism
within the computation graph itself. This design enforces causal entanglement between sparse features
and downstream computation, offering a distinct path toward interpretable and steerable “glass-box”
Transformers.

11. Conclusion
MFNs transform opaque residual activations into sparse mixtures of concept directions that

downstream modules must use, creating a bridge between dense computation and human-readable
semantics. This yields interpretability and steerability without leaving the main computation graph,
opening a measurable path toward interpretable, transparent, and resource-aware Transformer models.

Future work includes: (i) large-scale training experiments to evaluate concept purity, stability, and
cross-seed alignment; (ii) interventions and ablations to measure causal effects; and (iii) exploration of
MFNs for higher-level reasoning tasks and neuro-symbolic hybrids.

Acknowledgments: This work was developed in collaboration with Luma, an advanced AI co-thinking partner
whose conceptual and editorial contributions were substantial. The author retains full responsibility for the final
claims and interpretations presented here.

References
1. Anthropic: Towards Monosemanticity: Decomposing Language Models with Dictionary Learning (2023).
2. Anthropic: Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet (2024). https:

//transformer-circuits.pub/2024/scaling-monosemanticity/
3. Bricken, T., Nanda, N., et al.: Sparse Autoencoders Find Interpretable Features in Language Models. arXiv preprint

arXiv:2309.08600 (2023).
4. Nanda, N., Marks, J., and Wang, L.: Towards Modular Interpretability via Feature Splitting. arXiv preprint

arXiv:2403.04701 (2024).
5. Heap, J., Heskes, T., and Xu, M.: Sparse Autoencoders Can Interpret Randomly Initialized Transformers. arXiv

preprint arXiv:2501.17727 (2025).
6. Wang, Z., et al.: Monet: Mixture of Monosemantic Experts for Transformers. arXiv preprint arXiv:2412.04139 (2024).
7. Meng, K. et al.: Locating and Editing Factual Associations in GPT. NeurIPS (2022).
8. Meng, K. et al.: Mass-Editing Memory in a Transformer. ICLR (2023).
9. Olah, C. et al.: Zoom In: An Introduction to Circuits. Distill (2020).
10. Higgins, I. et al.: β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. ICLR (2017).
11. Chen, X. et al.: InfoGAN: Interpretable Representation Learning by Information Maximizing GANs. NeurIPS (2016).
12. Laine, S., Aila, T.: Temporal Ensembling for Semi-Supervised Learning. ICLR (2017 Workshop).
13. Tarvainen, A., Valpola, H.: Mean Teachers are Better Role Models: Weight-Averaged Consistency Targets Improve

SSL. NeurIPS (2017).
14. Bardes, A., Ponce, J., LeCun, Y.: VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised

Learning. ICML (2021).
15. Bell, A., Sejnowski, T.: An Information-Maximization Approach to Blind Separation and Blind Deconvolution.

Neural Computation (1995).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 October 2025 doi:10.20944/preprints202510.2064.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://doi.org/10.20944/preprints202510.2064.v1
http://creativecommons.org/licenses/by/4.0/

