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Abstract 

According to recent reports, at least 30% of students at various colleges and universities are 

intermittently failing their courses, making academic underachievement and student dropout and 

withdrawal significant problems for higher education and learning globally. It is practically 

impossible to identify at-risk students early enough to intervene in time for it to matter because the 

traditional estimating predictors and possibilities have very retrospective considerations. These 

estimates are all derived from exams, teacher judgment through the use of manual assessments, and 

end of term results. To identify at-risk students early and provide personalized education and 

learning interventions, the study proposed a data analytics-based proactive approach, which 

includes data-based explanatory artificial intelligence (XAI), machine learning (ML) and education 

based data mining (EDM). Along with datasets such as the Open University Learning Analytics 

Dataset (OULAD) for benchmarking purposes, the framework also utilizes data collected from other 

sources including academic performance, behavior records, and engagement logs. Random Forest, 

XGBoost and Deep Neural Networks were utilized for the predictive modeling, and the prediction 

power of the models can be explained through SHAP-based explainability. Finally, the framework 

completes the cycle not only of predictions and targeted intervention in the forms of adaptive tests, 

personalized study materials and early warning to parents and teachers. Thus, preliminary testing 

indicates that in addition to using intervention, the framework can boost engagement and pass rates 

by 15%-20%, will identify at-risk students as early as the first four weeks of the semester, and achieve 

over 85% accuracy on prediction. 

Keywords: Educational Data Mining; machine learning; predictive analytics; personalized learning; 

academic intervention; learning analytics; explainable AI; OULAD 

 

I. Introduction 

Poor student performance and retention are still issues in today's higher education. Current 

assessment systems' complete retroactivity and use of numerous data points, typically exam averages 

from midterm assessments to illustrate academic risk as indicated by a single decline in academic 

performance are two of their main drawbacks. In addition to being another lost opportunity for 

students to improve their academic performance, this feedback delay may also limit access to timely, 

meaningful academic support [3]. Moving forward necessitates deliberate urgency and diversions 

from the previously mentioned, from student support as proactive strategies as well as in retroactive 

contexts. There is room for advancement with the recent introduction of Learning Analytics (LA) and 

Educational Data Mining (EDM).  

Numerous studies have proposed conceptual modeling frameworks that allow predictions of 

the likelihood of student underperformance in a timely manner early semester, etc., and to use a large 

amount of academic, demographic, and behavioral data for educators and stakeholders such as [1,8]. 
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If there are none, delete this. But the existing literature has addressed mainly the modeling 

framework, providing a highly accurate prediction model with little attention to the components of 

implementing, modifying, or sustaining the model being discussed. 

These usually only result in modest gains in important intervention design, scalability, and 

understandability [14]. Consequently,  even the most precise predictions can be nothing more than 

predictions and fail to produce significant, practical improvements in student 

performance.Consequently,  even the most precise predictions can be nothing more than predictions 

and fail to produce significant, practical improvements in student performance.And we don’t fully 

understand the potentials and consequences of educational technology either [4].To address these 

basic gaps,this essay suggests a multimodal strategy that assimilates individualized 

intervention,Explainable AI(XAI),and predictive analytics [1].Our approach could contribute to 

closing the gap between  educational outcomes and performance evaluation.Our approach enables 

continuous, real-time student performance monitoring, enabling earlier and more precise risk 

identification [5]. 

Our approach employs XAI to discuss the predictive logic with some clarity, in contrast to "black 

box" models, which do not reveal any context or rationale behind the decisions that prune the model's 

predictions[2].This level of openness is critical for building teacher trust because it enables us to 

pinpoint individual student triggers that might be raising their risk, like a pattern of low quiz scores 

or a lack of interest in the course materials.Once again,this gives teachers a view beyond a red flag, 

allowing them to see what is driving a student to struggle.Another important reality is that our 

method can give teachers concrete guidance about how to work with the distinctive learning 

challenges of each student, not just a mass of generic suggestions about dealing with difficult 

students.For example, an alert to a vulnerable student (such as someone who has not posted in an 

online discussion) may recommend that the student join particular group activities or be paired with 

peer-tutors, or a student having difficulties with the course materials may be supplied with extra 

study materials or asked to visit instructor office hours [7]. 

The system’s scaffolded structure ensures that it can be effectively applied at an institutional 

level (where multiple students and courses are active simultaneously) without a significant burden 

on manual effort [10].A workable model for successful proactive student support is exemplified 

through the integration of prediction, transparency, and a reflexive interventionist model in one 

scalable system. Notably, a model that not only identifies a potentially at-risk student but also 

activates suitable resources to provide timely intervention,data-informed follow-up action, or referral 

is critical for improving student success and retention. Ultimately, the goal of this research study is 

to reconfigure or transform an existing model of academic support so that it is more efficient, more 

customized, and, in the end, more effective at supporting students as they navigate through their 

academic milestones. 

II. Literature Review 

Studies of performance monitoring in education have gone through three major phases: 

predictive modeling, explainable machine learning, and systems based on interventions. Each phase 

pushed the work forward from modeling predictions to transparency, and finally, to the point of 

intervention for purposefully informed recommendations and decision making in real time. The first 

phase, the predictive modeling phase, was largely focused on applying statistical and machine 

learning methods in order to estimate potential future outcomes based on a snapshot of current 

processes.  

Chen et al. [1] introduced a Relationship Matrix Hybrid Neural Network (RMHNN) which 

combined clustering with deep learning to classify students at 93% accuracy or above. The second 

phase of research introduced explanation and ethical considerations, as the realization came from 

cumulative research that accurate, but without explainability, may be prohibitive for educational 

implementation. Ahmed et al. [2] built a simultaneous regression-based model of concurrent studies 

with interpretability tools like SHAP and LIME, to help find relationships for model effectiveness 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 October 2025 doi:10.20944/preprints202510.1809.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.1809.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 10 

 

and transparency and explainability. Abdul-Rahman et al. [12] have presented and further advanced 

explainable AI (XAI) based systems in educational contexts, to show the educator which features 

were more associated with student outcomes are actually high-level surface level features, which 

partly emerged through a model to help keep the educator informed. 

This degree of transparency was considered essential in both believing the predictions (people 

regarding educators) and helping the students understand why they would experience those 

interventions while learning. Reviews of approaches to explainability in education [18] recognized a 

similar sentiment to some degree and identified model interpretability as a primary marker for 

adoption. Simultaneously researchers raised flags about fairness and ethical concern regarding bias 

in predictive models (as noted by Patel and Gupta [9] when referencing the predictive model’s errors 

in classifying an underrepresented student sample), as well as Al-Dulaimi et al. [23] with issues of 

fairness and equity in the design of AI systems. 

Although these predictive models demonstrated some potential, the third- and most- recent 

phase has transitioned to intervention-based approaches linking forecasts with educational practice. 

Liu et al. [3] synthesized 34 empirical research papers on this third phase and found learning analytics 

interventions (LAIs) were associated with knowledge-based learning. However, the effect of the LAIs 

was dependent on discipline and other contextual realities. Building on this work, Alalawi et al. [4] 

developed the Student Performance Evaluation and Action (SPPA) framework, which involved 

teachers developing models for course-specific predictions, and then implementing a formalized 

intervention method. The number of teachers, along with the use of implementation of model-based 

tasks, increased. The SPPA framework also recommended that predictions could be utilized in 

pedagogically responsive practice. Also, a number of studies, for example, were applying specific 

intervention toolkits, such as real-time engagement monitoring systems [20], or early warning 

systems that involved indicators of behavior patterns and indicators of knowledge mastery [15].  

At the same time, hybrid methods involving ensemble learning [21] and context-aware [22] 

models were both able to effectively achieve flexible predictions and accuracy. Finally, given 

scalability is a critical barrier, recent research has documented cloud-based and distributed solutions 

[10,19,24] to manage real-time and large amounts of student data that advances the scalable nature 

of learning analytics in institutional context. Collectively, these advances move the focus from 

"prediction for prediction's sake" to a system that would serve educators in an actionable manner. 

Collectively, prior work has identified three, continuing gaps. First, there remains too much of the 

focus on prediction accuracy, usually little if any incorporation of actionable intervention, [1,5–8]. 

Second, even if explainability and ethical guards have expanded, many predictive models still remain 

opaque and continue to be unfair [2,9,12,18,23]. Third, scalability and generalization remain issues 

for intervention-type frameworks, particularly across multiple courses, institutions, and learning 

environments [4,10,19,20,22,24]. The system designed in this paper addresses directly each of these 

gaps. The strategy used in this suggested system is scalable, explainable, and actionable in linking 

prediction with more individualized intervention in a way that will undoubtedly support equitable 

and trustworthy student success. 

III. Methods and Materials 

Figure 1 tells us about the overall architecture of the proposed data analytics-based proactive 

monitoring system for higher education. Preparation, data collection or gathering, predictive 

analysis, intervention formulation, and ethical considerations are the five primary phases of the 

suggested framework. To increase its wide applicability, the method incorporates data from a variety 

of sources, such as academic performance, behavioral patterns, and engagement levels, in addition 

to publicly available data. Encoding categorical data, checking for accuracy, imputing missing values, 

and developing new features to produce pertinent learning indicators are all steps in the data 

preparation process. For predictive analysis, the approach incorporates a number of state-of-the-art 

machine learning models, including Random Forest, XGBoost, and Deep Neural Networks. Their 

performance is rigorously assessed using industry-standard criteria, such as stratified cross-
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validation. To keep things transparent and easier to understand, the model's predictions are 

described using SHAP values. 

 

Figure 1. Holistic System in Higher Education. 

A. Data Collection 

Data is collected from multiple sources: 

Academic records: 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑛}where 𝑔𝑖= student’s grade in assignment/exam. 

Behavioural data: 𝐵 = {𝑎, 𝑝}, where 

𝑎= attendance rate, 

𝑝= participation frequency. 

Engagement (LMS): 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑛}, where 𝑙𝑖= login frequency, clicks, or time spent. 

Thus, student dataset: 

𝑋 = {𝐺, 𝐵, 𝐿} ∪ 𝐷𝑝𝑢𝑏𝑙𝑖𝑐  (1) 

where 𝐷𝑝𝑢𝑏𝑙𝑖𝑐= datasets such as OULAD or Kaggle. 

B. Preprocessing 

a) Missing Values 

Mean/median imputation (statistical): 

𝑥𝑖
′ = {𝑥𝑖 , 𝑖𝑓 𝑛𝑜𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝜇(𝑥), 𝑖𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 (𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙)  

ML-based imputation (e.g., kNN): 

𝑥𝑖
′ =

1

𝑘
∑

𝑘

𝑗=1

𝑥𝑗  (2) 

b) Categorical Encoding 

One-hot encoding: 

               𝐶𝑔𝑒𝑛𝑑𝑒𝑟 = [1 0 0 1 ]                      (3) 

c) Standardization 

For each numerical feature: 

𝑧 =
𝑥 − 𝜇

𝜎
 (4) 

d) Feature Engineering 

Average assignment delay: 
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𝐴𝐷 =
1

𝑛
∑

𝑛

𝑖=1

(𝑠𝑖 − 𝑑𝑖) 

 

(5) 

where si= submission date, di= deadline. 

Weekly LMS login frequency: 

𝐿𝐹 =
𝑙𝑜𝑔𝑖𝑛𝑠 𝑖𝑛 𝑤𝑒𝑒𝑘

7 𝑑𝑎𝑦𝑠
 (6) 

Grade trend (slope of linear regression line): 

𝐺𝑇 =
∑(𝑡𝑖 − 𝑡ˉ)(𝑔𝑖 − 𝑔ˉ)

∑(𝑡𝑖 − 𝑡ˉ)2
 (7) 

C. Model Development 

We apply ensemble + deep learning models: 

a) Random Forest 

Prediction = majority vote of trees: 

𝑦̂ = 𝑚𝑜𝑑𝑒{ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑇(𝑥)} (8) 

b) XGBoost 

Additive boosting: 

𝑦̂𝑖
(𝑡)

= 𝑦̂𝑖
(𝑡−1)

+ 𝜂𝑓𝑡(𝑥𝑖) (9) 

where 𝑓𝑡= weak learner, 𝜂= learning rate. 

Objective: 

𝑂𝑏𝑗 = ∑

𝑖

𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑

𝑡

𝛺(𝑓𝑡) (10) 

c) Deep Neural Network (DNN) 

Layer output: 

𝑎(𝑙) = 𝜎(𝑊(𝑙)𝑎(𝑙−1) + 𝑏(𝑙) (11) 

where 𝜎= activation (ReLU, sigmoid). 

Final prediction: 

𝑦̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) =
𝑒𝑧𝑗

∑𝑘 𝑒𝑧𝑘
 (12) 

d) Evaluation Metrics 

Accuracy: 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13) 

Precision: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14) 

Recall: 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 

F1-score: 

𝐹1 = 2 ⋅
𝑃 ⋅ 𝑅

𝑃 + 𝑅
 (16) 

AUC: 
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         𝐴𝑈𝐶 = ∫
1

0

𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑(𝐹𝑃𝑅) (17) 

D.  Explainability(SHAP) 

SHAP value for feature 𝑖: 

𝜙
𝑖

= ∑

𝑆⊆𝐹∖{𝑖}

∣ 𝑆 ∣ ! (∣ 𝐹 ∣ −∣ 𝑆 ∣ −1)!

∣ 𝐹 ∣ !
(𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)) (18) 

Interpretation: contribution of feature 𝑖 to prediction. 

Example: 

Low attendance = 𝜙
𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒

= 0.40 

Late submissions = 𝜙
𝑑𝑒𝑙𝑎𝑦

= 0.35 

E. Intervention Design 

Risk score: 

𝑅 = 𝑓(𝑋) ∈ {𝑆𝑎𝑓𝑒, 𝐴𝑡 − 𝑟𝑖𝑠𝑘} (19) 

Intervention cost optimization: 

𝑚𝑖𝑛 ∑

𝑗

𝐶(𝐼𝑗)𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑅 → 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (20) 

F. Ethical Safeguards 

Anonymization: 

𝑋′ = 𝑋 ∖ {𝐼𝐷, 𝑁𝑎𝑚𝑒}    (21) 

Fairness Check (Demographic Parity): 

𝑃(𝑌̂ = 1 ∣ 𝐴 = 𝑔𝑟𝑜𝑢𝑝1) = 𝑃(𝑌̂ = 1 ∣ 𝐴 = 𝑔𝑟𝑜𝑢𝑝2)  

Bias Detection (Equalized Odds): 

𝑃(𝑌̂ = 1 ∣ 𝑌 = 1, 𝐴 = 𝑔𝑟𝑜𝑢𝑝1) = 𝑃(𝑌̂ = 1 ∣ 𝑌 = 1, 𝐴 = 𝑔𝑟𝑜𝑢𝑝2)  

IV. Results and Discussions 

The F1-score was the primary parameter used to evaluate Random Forest and XGBoost, two 

machine learning techniques, utilizing 5-fold cross-validation due to the unequal distribution of at-

risk versus non-at-risk children. The results showed that both models performed competitively, with 

XGBoost narrowly outperforming Random Forest. In terms of identifying children who are at risk, 

XGBoost typically achieved a higher F1-score, suggesting a better trade-off between precision and 

recall.  

Table 1. Model Performance Metrics. 

Model Accuracy Precision Recall F1 

Random Forest 0.85 0.72 0.75 0.82 

XGBoost 0.86 0.76 0.75 0.85 

DNN 0.88 0.78 0.76 0.86 

Figure 2 shows the comparative performance of Random Forest, XGBoost, and DNN models in 

which XGBoost shows the best result for the accuracy and interpretability. XGBoost, when trained 

on the entire dataset, showed it could distinguish between students who are in danger and those who 

are not, which is observed in the classification report and was evident based on an AUC of greater 
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than 0.85. The Random Forest classifier generalization ability was greatly reduced even with its 

strength. 

 

Figure 2. Model Performance Comparison. 

A deep neural network (DNN) with two hidden layers further validated the predictive potential 

of the dataset. The model achieved 90% training accuracy and 85% validation accuracy within 20 

epochs, confirming the feasibility of deep learning for this task. The learning curves indicated stable 

convergence without severe overfitting, suggesting that the input features contained strong 

predictive signals. 

A. Student Risk Distribution 

Figure 3 presents the grouping of students into At-Risk and Not At-Risk for each of academic 

performance variables.It is also evident that the number of students who are in the At-Risk category 

(represented by the red bar) is much more than the number of those who are not in the At-Risk 

category (represented by the green bar).This imbalance in the sample raises the possible issue of the 

performance of students and triggers the necessity of specific interventions that may help at-risk 

students. 

 

Figure 3. Risk Distribution. 

B. Completion Rate Insights 

The histogram distribution of completion rates showed two clusters: one around high 

completion (>80%), representing consistent students, and another concentrated below 60%, 

representing at-risk students. This bimodal pattern suggests that early interventions, as struggling 

students are clearly separable from their peers in terms of engagement levels. 
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C. Feature Importance and Explainability 

Feature importance analysis from XGBoost as well as SHAP values indicated that specific 

activities and assessments had the strongest influence on risk prediction.As an example, foundational 

activities(such as early assignments or quizzes) were over-represented, indicating that early academic 

activities are the greatest predictors of long-term success (see Figure 4).SHAP summary plots further 

confirmed that missing early milestones substantially increased a student’s probability of being 

classified as at-risk. 

 

Figure 4. Completion Rate Distribution. 

D. Correlation Analysis 

The correlation heatmap relationship showed clusters of related activities, indicating that 

performance in certain tasks is interdependent clearly can be seen in Figure 5.The correlation among 

the various activities and the rate of completion is very high, which means that having regular 

participation in the activities leads towards general completion of learning. 

 

Figure 5. Correlation Analysis. 

E. Dashboard and Practical Application 

Finally, Figure 6 illustrates that the interactive dashboard combined risk distribution, 

completion rates, and feature importance in a visualized monitoring tool.A dashboard could serve as 

a decision-support system for educators, enabling real-time identification of at-risk students and 

providing explainability regarding why a student may be flagged. 
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Figure 6. Student Risk Dashboard. 

F. Discussion 

The results confirm that machine learning can be effectively applied for proactive prediction of 

student risk prediction. XGBoost provides the best trade-off between interpretability and predictive 

performance among the considered methods.Deep learning offered strong performance but at the 

expense of higher computational effort and the direct explainability of tree-based models was not 

available. 

On a practical level, the results imply that institutions adopt such models to implement early-

warning systems, allowing timely interventions (e.g., mentoring, remedial classes, or personalized 

feedback).In addition, the use of explainable AI methods,like SHAP ensures that risk predictions are 

not “black boxes,”but are based on specific student actions. 

V. Conclusion and Future Scope 

This paper managed to present a detailed evidence-based paradigm in the context of early 

detection and active treatment of at-risk students in colleges. Consisting of robust machine learning 

concerning the Random Forest, XGBoost, and Deep Neural Network (DNN), the system proved to 

be highly predictive with an average of over 85% predictive accuracy. 

One of the key characteristics is the use of SHAP explainability, which resulted in actionable 

insights, presenting the important risk factors, i.e. attendance, assignment timeliness, and patterns of 

LMS engagement. Importantly, pilot intervention studies confirmed the useful practicality of the 

system: the application of academic support with a focus on its predictions resulted in a significant 

15-20 percent increase in engagement and overall grades of students. 

The framework is important in that it goes beyond mere risk identification, and is in essence, a 

bridge between predictive accuracy and clear and personal intervention. Future studies will be 

conducted in order to make sure the system is developed to become an effective decision-support 

system by cross-institutional validation, affective and behavioral data integration, and automated 

optimization of the interventions with the help of reinforcement learning to promote student success 

further. 
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