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Abstract

According to recent reports, at least 30% of students at various colleges and universities are
intermittently failing their courses, making academic underachievement and student dropout and
withdrawal significant problems for higher education and learning globally. It is practically
impossible to identify at-risk students early enough to intervene in time for it to matter because the
traditional estimating predictors and possibilities have very retrospective considerations. These
estimates are all derived from exams, teacher judgment through the use of manual assessments, and
end of term results. To identify at-risk students early and provide personalized education and
learning interventions, the study proposed a data analytics-based proactive approach, which
includes data-based explanatory artificial intelligence (XAI), machine learning (ML) and education
based data mining (EDM). Along with datasets such as the Open University Learning Analytics
Dataset (OULAD) for benchmarking purposes, the framework also utilizes data collected from other
sources including academic performance, behavior records, and engagement logs. Random Forest,
XGBoost and Deep Neural Networks were utilized for the predictive modeling, and the prediction
power of the models can be explained through SHAP-based explainability. Finally, the framework
completes the cycle not only of predictions and targeted intervention in the forms of adaptive tests,
personalized study materials and early warning to parents and teachers. Thus, preliminary testing
indicates that in addition to using intervention, the framework can boost engagement and pass rates
by 15%-20%, will identify at-risk students as early as the first four weeks of the semester, and achieve
over 85% accuracy on prediction.

Keywords: Educational Data Mining; machine learning; predictive analytics; personalized learning;
academic intervention; learning analytics; explainable AI; OULAD

I. Introduction

Poor student performance and retention are still issues in today's higher education. Current
assessment systems' complete retroactivity and use of numerous data points, typically exam averages
from midterm assessments to illustrate academic risk as indicated by a single decline in academic
performance are two of their main drawbacks. In addition to being another lost opportunity for
students to improve their academic performance, this feedback delay may also limit access to timely,
meaningful academic support [3]. Moving forward necessitates deliberate urgency and diversions
from the previously mentioned, from student support as proactive strategies as well as in retroactive
contexts. There is room for advancement with the recent introduction of Learning Analytics (LA) and
Educational Data Mining (EDM).

Numerous studies have proposed conceptual modeling frameworks that allow predictions of
the likelihood of student underperformance in a timely manner early semester, etc., and to use a large
amount of academic, demographic, and behavioral data for educators and stakeholders such as [1,8].
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If there are none, delete this. But the existing literature has addressed mainly the modeling
framework, providing a highly accurate prediction model with little attention to the components of
implementing, modifying, or sustaining the model being discussed.

These usually only result in modest gains in important intervention design, scalability, and
understandability [14]. Consequently, even the most precise predictions can be nothing more than
predictions and fail to produce significant, practical improvements in student
performance.Consequently, even the most precise predictions can be nothing more than predictions
and fail to produce significant, practical improvements in student performance.And we don’t fully
understand the potentials and consequences of educational technology either [4].To address these
basic gaps,this essay suggests a multimodal strategy that assimilates individualized
intervention,Explainable AI(XAI),and predictive analytics [1].Our approach could contribute to
closing the gap between educational outcomes and performance evaluation.Our approach enables
continuous, real-time student performance monitoring, enabling earlier and more precise risk
identification [5].

Our approach employs XAI to discuss the predictive logic with some clarity, in contrast to "black
box" models, which do not reveal any context or rationale behind the decisions that prune the model's
predictions[2].This level of openness is critical for building teacher trust because it enables us to
pinpoint individual student triggers that might be raising their risk, like a pattern of low quiz scores
or a lack of interest in the course materials.Once again,this gives teachers a view beyond a red flag,
allowing them to see what is driving a student to struggle.Another important reality is that our
method can give teachers concrete guidance about how to work with the distinctive learning
challenges of each student, not just a mass of generic suggestions about dealing with difficult
students.For example, an alert to a vulnerable student (such as someone who has not posted in an
online discussion) may recommend that the student join particular group activities or be paired with
peer-tutors, or a student having difficulties with the course materials may be supplied with extra
study materials or asked to visit instructor office hours [7].

The system’s scaffolded structure ensures that it can be effectively applied at an institutional
level (where multiple students and courses are active simultaneously) without a significant burden
on manual effort [10].A workable model for successful proactive student support is exemplified
through the integration of prediction, transparency, and a reflexive interventionist model in one
scalable system. Notably, a model that not only identifies a potentially at-risk student but also
activates suitable resources to provide timely intervention,data-informed follow-up action, or referral
is critical for improving student success and retention. Ultimately, the goal of this research study is
to reconfigure or transform an existing model of academic support so that it is more efficient, more
customized, and, in the end, more effective at supporting students as they navigate through their
academic milestones.

I1. Literature Review

Studies of performance monitoring in education have gone through three major phases:
predictive modeling, explainable machine learning, and systems based on interventions. Each phase
pushed the work forward from modeling predictions to transparency, and finally, to the point of
intervention for purposefully informed recommendations and decision making in real time. The first
phase, the predictive modeling phase, was largely focused on applying statistical and machine
learning methods in order to estimate potential future outcomes based on a snapshot of current
processes.

Chen et al. [1] introduced a Relationship Matrix Hybrid Neural Network (RMHNN) which
combined clustering with deep learning to classify students at 93% accuracy or above. The second
phase of research introduced explanation and ethical considerations, as the realization came from
cumulative research that accurate, but without explainability, may be prohibitive for educational
implementation. Ahmed et al. [2] built a simultaneous regression-based model of concurrent studies
with interpretability tools like SHAP and LIME, to help find relationships for model effectiveness
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and transparency and explainability. Abdul-Rahman et al. [12] have presented and further advanced
explainable AI (XAI) based systems in educational contexts, to show the educator which features
were more associated with student outcomes are actually high-level surface level features, which
partly emerged through a model to help keep the educator informed.

This degree of transparency was considered essential in both believing the predictions (people
regarding educators) and helping the students understand why they would experience those
interventions while learning. Reviews of approaches to explainability in education [18] recognized a
similar sentiment to some degree and identified model interpretability as a primary marker for
adoption. Simultaneously researchers raised flags about fairness and ethical concern regarding bias
in predictive models (as noted by Patel and Gupta [9] when referencing the predictive model’s errors
in classifying an underrepresented student sample), as well as Al-Dulaimi et al. [23] with issues of
fairness and equity in the design of Al systems.

Although these predictive models demonstrated some potential, the third- and most- recent
phase has transitioned to intervention-based approaches linking forecasts with educational practice.
Liu et al. [3] synthesized 34 empirical research papers on this third phase and found learning analytics
interventions (LAls) were associated with knowledge-based learning. However, the effect of the LAls
was dependent on discipline and other contextual realities. Building on this work, Alalawi et al. [4]
developed the Student Performance Evaluation and Action (SPPA) framework, which involved
teachers developing models for course-specific predictions, and then implementing a formalized
intervention method. The number of teachers, along with the use of implementation of model-based
tasks, increased. The SPPA framework also recommended that predictions could be utilized in
pedagogically responsive practice. Also, a number of studies, for example, were applying specific
intervention toolkits, such as real-time engagement monitoring systems [20], or early warning
systems that involved indicators of behavior patterns and indicators of knowledge mastery [15].

At the same time, hybrid methods involving ensemble learning [21] and context-aware [22]
models were both able to effectively achieve flexible predictions and accuracy. Finally, given
scalability is a critical barrier, recent research has documented cloud-based and distributed solutions
[10,19,24] to manage real-time and large amounts of student data that advances the scalable nature
of learning analytics in institutional context. Collectively, these advances move the focus from
"prediction for prediction's sake" to a system that would serve educators in an actionable manner.
Collectively, prior work has identified three, continuing gaps. First, there remains too much of the
focus on prediction accuracy, usually little if any incorporation of actionable intervention, [1,5-8].
Second, even if explainability and ethical guards have expanded, many predictive models still remain
opaque and continue to be unfair [2,9,12,18,23]. Third, scalability and generalization remain issues
for intervention-type frameworks, particularly across multiple courses, institutions, and learning
environments [4,10,19,20,22,24]. The system designed in this paper addresses directly each of these
gaps. The strategy used in this suggested system is scalable, explainable, and actionable in linking
prediction with more individualized intervention in a way that will undoubtedly support equitable
and trustworthy student success.

IT1. Methods and Materials

Figure 1 tells us about the overall architecture of the proposed data analytics-based proactive
monitoring system for higher education. Preparation, data collection or gathering, predictive
analysis, intervention formulation, and ethical considerations are the five primary phases of the
suggested framework. To increase its wide applicability, the method incorporates data from a variety
of sources, such as academic performance, behavioral patterns, and engagement levels, in addition
to publicly available data. Encoding categorical data, checking for accuracy, imputing missing values,
and developing new features to produce pertinent learning indicators are all steps in the data
preparation process. For predictive analysis, the approach incorporates a number of state-of-the-art
machine learning models, including Random Forest, XGBoost, and Deep Neural Networks. Their
performance is rigorously assessed using industry-standard criteria, such as stratified cross-
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validation. To keep things transparent and easier to understand, the model's predictions are
described using SHAP values.
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Figure 1. Holistic System in Higher Education.

A. Data Collection
Data is collected from multiple sources:
Academic records: G = {g;, g,, ..., gn}Where g;=student’s grade in assignment/exam.
Behavioural data: B = {a,p}, where
a= attendance rate,
p= participation frequency.
Engagement (LMS): L = {l;,1, ..., 1,}, where [;=login frequency, clicks, or time spent.
Thus, student dataset:

1
X = {G, B, L} U Dyupse M

where D,,p;;.= datasets such as OULAD or Kaggle.
B.  Preprocessing

a) Missing Values
Mean/median imputation (statistical):
x; = {x;, if not missing U(x), if missing (numerical)
ML-based imputation (e.g., KNN):

1 k
X=p) @

=1

b) Categorical Encoding
One-hot encoding:

Cgender =[1001] 3)

¢) Standardization
For each numerical feature:
_x—u
7=— @)

d) Feature Engineering
Average assignment delay:
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1
AD = EZ (si — dy) 5

where s;= submission date, d;= deadline.
Weekly LMS login frequency:

logins in week

LF= 7 days ©)
Grade trend (slope of linear regression line):
GT = Z(tlz (tti )_(‘zi)z 9) @)
C.  Model Development
We apply ensemble + deep learning models:
a) Random Forest
Prediction = majority vote of trees:
¥ = mode{h,(x), hp(x), ..., hr(x)} 8)
b) XGBoost
Additive boosting;:
957 =970 4 nfelx) ©)
where f;= weak learner, 7)=learning rate.
Objective:
0bj =" 1P+ ). AU (10)
i t
c) Deep Neural Network (DNN)
Layer output:
a® =gWW®alt-1 + p® (11)
where 0= activation (ReLU, sigmoid).
Final prediction:
Zj
¥y = softmax(z) = m (12)
d) Evaluation Metrics
Accuracy:
e TP + TN 13)
TP+TN + FP+FN
Precision:
P = TP (14)
TP +FP
Recall:
po TP (15)
TP+ FN
F1-score:
F1=2 LR (16)
P+R
AUC:
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AUC = f ' TPR(FPR) d(FPR) (17)
0

D.  Explainability(SHAP)
SHAP value for feature i:

[STIAFI-1ST-1)! )
b= ) T U ~ £ (18)
SCF\{i} '
Interpretation: contribution of feature i to prediction.
Example:
Low attendance=¢p .  =0.40
Late submissions = ¢ detay = 035
E. Intervention Design
Risk score:
R = f(X) € {Safe, At — risk} (19)

Intervention cost optimization:

min Z C(l)subject to R — improved performance (20)
J
F.  Ethical Safeguards
Anonymization:
X' =X\ {ID,Name} (21)

Fairness Check (Demographic Parity):
P(Y =114 =group,) =P =114 = group,)

Bias Detection (Equalized Odds):
P(Y=11Y=1A=group,))=P(Y =11Y =1,4 = group,)

IV. Results and Discussions

The Fl-score was the primary parameter used to evaluate Random Forest and XGBoost, two
machine learning techniques, utilizing 5-fold cross-validation due to the unequal distribution of at-
risk versus non-at-risk children. The results showed that both models performed competitively, with
XGBoost narrowly outperforming Random Forest. In terms of identifying children who are at risk,
XGBoost typically achieved a higher Fl-score, suggesting a better trade-off between precision and

recall.
Table 1. Model Performance Metrics.
Model Accuracy Precision Recall F1
Random Forest 0.85 0.72 0.75 0.82
XGBoost 0.86 0.76 0.75 0.85
DNN 0.88 0.78 0.76 0.86

Figure 2 shows the comparative performance of Random Forest, XGBoost, and DNN models in
which XGBoost shows the best result for the accuracy and interpretability. XGBoost, when trained
on the entire dataset, showed it could distinguish between students who are in danger and those who
are not, which is observed in the classification report and was evident based on an AUC of greater
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than 0.85. The Random Forest classifier generalization ability was greatly reduced even with its
strength.

- Model Performance Comparison

0.8 4

0.6 1

0.4 4

Mean F1 Score (5-fold CV)

0.2

Random Forest XGBoost

DNN Training vs Validation Accuracy
1.00 —

Accuracy

Train Accuracy
validation Accuracy

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Epochs

Figure 2. Model Performance Comparison.

A deep neural network (DNN) with two hidden layers further validated the predictive potential
of the dataset. The model achieved 90% training accuracy and 85% validation accuracy within 20
epochs, confirming the feasibility of deep learning for this task. The learning curves indicated stable
convergence without severe overfitting, suggesting that the input features contained strong
predictive signals.

A. Student Risk Distribution

Figure 3 presents the grouping of students into At-Risk and Not At-Risk for each of academic
performance variables.It is also evident that the number of students who are in the At-Risk category
(represented by the red bar) is much more than the number of those who are not in the At-Risk
category (represented by the green bar).This imbalance in the sample raises the possible issue of the
performance of students and triggers the necessity of specific interventions that may help at-risk
students.

At-Risk vs Not At-Risk Students

Number of Students

Not At-Risk (0) At-Risk (1)
target

Figure 3. Risk Distribution.

B.  Completion Rate Insights

The histogram distribution of completion rates showed two clusters: one around high
completion (>80%), representing consistent students, and another concentrated below 60%,
representing at-risk students. This bimodal pattern suggests that early interventions, as struggling
students are clearly separable from their peers in terms of engagement levels.
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C.  Feature Importance and Explainability

Feature importance analysis from XGBoost as well as SHAP values indicated that specific
activities and assessments had the strongest influence on risk prediction.As an example, foundational
activities(such as early assignments or quizzes) were over-represented, indicating that early academic
activities are the greatest predictors of long-term success (see Figure 4).SHAP summary plots further
confirmed that missing early milestones substantially increased a student’s probability of being
classified as at-risk.

Completion Rate Distribution

Stutent Risk
0 o
"

campletion_ate

Figure 4. Completion Rate Distribution.

D. Correlation Analysis

The correlation heatmap relationship showed clusters of related activities, indicating that
performance in certain tasks is interdependent clearly can be seen in Figure 5.The correlation among
the various activities and the rate of completion is very high, which means that having regular
participation in the activities leads towards general completion of learning.

Correlation Heatmap of Activities

H
3

Figure 5. Correlation Analysis.

E.  Dashboard and Practical Application

Finally, Figure 6 illustrates that the interactive dashboard combined risk distribution,
completion rates, and feature importance in a visualized monitoring tool. A dashboard could serve as
a decision-support system for educators, enabling real-time identification of at-risk students and
providing explainability regarding why a student may be flagged.
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ul Student Risk Dashboard

Risk Distribution Completion Rates Feature Importances

B

Figure 6. Student Risk Dashboard.

F.  Discussion

The results confirm that machine learning can be effectively applied for proactive prediction of
student risk prediction. XGBoost provides the best trade-off between interpretability and predictive
performance among the considered methods.Deep learning offered strong performance but at the
expense of higher computational effort and the direct explainability of tree-based models was not
available.

On a practical level, the results imply that institutions adopt such models to implement early-
warning systems, allowing timely interventions (e.g., mentoring, remedial classes, or personalized
feedback).In addition, the use of explainable Al methods,like SHAP ensures that risk predictions are
not “black boxes,”but are based on specific student actions.

V. Conclusion and Future Scope

This paper managed to present a detailed evidence-based paradigm in the context of early
detection and active treatment of at-risk students in colleges. Consisting of robust machine learning
concerning the Random Forest, XGBoost, and Deep Neural Network (DNN), the system proved to
be highly predictive with an average of over 85% predictive accuracy.

One of the key characteristics is the use of SHAP explainability, which resulted in actionable
insights, presenting the important risk factors, i.e. attendance, assignment timeliness, and patterns of
LMS engagement. Importantly, pilot intervention studies confirmed the useful practicality of the
system: the application of academic support with a focus on its predictions resulted in a significant
15-20 percent increase in engagement and overall grades of students.

The framework is important in that it goes beyond mere risk identification, and is in essence, a
bridge between predictive accuracy and clear and personal intervention. Future studies will be
conducted in order to make sure the system is developed to become an effective decision-support
system by cross-institutional validation, affective and behavioral data integration, and automated
optimization of the interventions with the help of reinforcement learning to promote student success
further.
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