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Abstract 

Additive Manufacturing (AM) is increasingly leveraging Deep Learning (DL) to enhance process 

monitoring, defect detection, and predictive simulation. This paper synthesizes our results in 

applying DL to laser-based powder bed fusion of polymers (PBF-LB/P), focusing on four key 

architectures: convolutional neural networks (CNNs) for real-time spatial anomaly detection, 

recurrent neural networks (RNNs/LSTMs) for capturing temporal dynamics, generative models 

(GANs and autoencoders) for unsupervised anomaly detection and data augmentation, and physics-

informed neural networks (PINNs) for embedding governing equations into predictive models. Each 

approach demonstrates distinct advantages: CNNs deliver high accuracy, LSTMs capture evolving 

defects, GANs mitigate data scarcity, and PINNs improve generalizability, yet critical limitations 

persist, including heavy reliance on labelled datasets, instability of generative models, limited 

interpretability, and lack of scalability for real-time industrial deployment. This paper delineates a 

roadmap for advancing DL-driven monitoring of the PBF-LB/P process from academic feasibility to 

robust industrial practice, with particular emphasis on resource efficiency and the promotion of both 

ecological and economic sustainability. 

Keywords: additive manufacturing (AM); laser-based powder bed fusion of polymers (PBF-LB/P); 

deep learning; convolutional neural networks (CNN) 

 

1. Introduction 

Historically, industry and research have focused on additive manufacturing (AM) owing to its 

capacity to realize complex geometries with reduced raw material consumption and shortened 

production cycles, while simultaneously facilitating weight reduction, lowering production costs, 

minimizing waste, and accelerating time-to-market. The large-scale implementation to achieve mass 

production remains limited by quality differences and processing constraints inherent in the process 

[1,2]. Laser-based powder bed fusion of polymers (PBF-LB/P) is a widely used additive 

manufacturing process that employs a laser to selectively fuse polymer powder particles layer by 

layer. This technology enables the fabrication of robust prototypes and functional end-use 

components from polyamides, polycarbonates, polypropylene, and thermoplastic polyurethane, 

produced as rigid parts with high structural integrity and without the need for supporting structures. 

By offering greater design freedom than conventional subtractive manufacturing technologies, more 

efficient material utilization, and shorter lead times, the process opens up new opportunities across 

aeronautics, automotive, medical devices, and consumer products. Despite its promising prospects, 
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powder bed fusion of polymers continues to face quality challenges, including warpage, coating 

defects such as part shifting and particle drag, as well as dimensional inconsistencies resulting from 

the complex interactions between powder behavior, thermal gradients, and the laser–material 

response.  Irregular surface texture, in homogeneously irregular density, and residual stresses are 

important obstacles to wider application [3,4]. The mechanical and plastic characteristics of the 

components, such as density, hardness, and porosity, are strongly influenced by parameters such as 

laser power, scanning speed, hatching strategy, enclosure spacing, and temperature, which require 

fine-tuning to achieve the required size and mechanical characteristics [5]. Conventional process 

control strategies rely on large-scale, physics-based simulations or advanced inspection systems; 

although highly informative, these approaches are computationally intensive and impractical for 

near-real-time process monitoring and industrial deployment. The resulting bottleneck leads to 

incoherent production with reduced acceptability. With the advent of artificial intelligence, machine 

and deep learning approaches, new approaches have been allowed to represent nonlinear quality-

versus-process variables associations [6]. While the literature on laser-based powder bed fusion of 

metals (PBF-LB/M) demonstrates strong CNN performance for layer-wise defect detection, the 

polymer domain differs in both sensing modality and defect phenomenology. Consequently, models 

trained on melt pool images cannot be directly applied to infrared or visible powder bed surface data, 

necessitating the development of polymer-specific datasets and evaluation protocols [7,8]. Recent 

research synthesizes how artificial intelligence is changing the monitoring and control of AM, but 

also highlights gaps in open data and reporting standards on powder bed fusion [9,10], which 

prevent consistent comparison. Supervised CNN and regression models are used, while classification 

is used for the detection and mapping of anomalies. Unsupervised grouping and anomaly detection 

are used to detect anomalies where labelled information is not available. In reinforcement learning, 

trial-and-error process control with feedback is used. Closed-loop adaptive quality control offers 

promise when integrated with ML for multimodal in situ inspection, combining thermal imaging, 

acoustic monitoring, and optical profiling. However, there is still a gap: current ML and DL solutions 

are typically data-hungry black boxes, lacking robustness and interpretation. Industrial deployment 

is hindered by latency, scalability, and domain adaptation issues [11,12]. Lightweight, efficient, and 

widely applicable models with physical knowledge are therefore needed for near-real-time quality 

assurance. However, most existing approaches continue to struggle with simultaneously achieving 

high detection accuracy and meeting the stringent latency requirements necessary for real-time 

industrial deployment. 

1.1. Objectives and Contributions 

This study addresses the above limitations by integrating deep learning into the quality control 

of powder bed fusion of polymers. Its main contributions can be summarized as follows: 

• Comparative Analysis: A comparison of different deep learning algorithms for PBF-LB/P 

quality control, highlighting their advantages and disadvantages. 

• Hybrid Strategies: Suggestions for advantageous combinations of different methods. 

• Defining the roadmap for next-generation AM: In addition to providing a comprehensive 

overview of the most advanced techniques, this work outlines the future path towards 

predictive, efficient, and reliable industrial-scale additive manufacturing. 

However, further experiments are needed to determine whether these contributions can be 

generalized to different types of machines and types of polymers. 

2. Background and Related Work  

2.1. Additive Manufacturing Process and PBF-LB/P 

Additive manufacturing (AM) technologies, particularly powder bed fusion (PBF), have 

fundamentally transformed both the design of complex geometries and the manufacturing process 

itself. PBF enables the fabrication of polymer components without the need for supporting structures 
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and demonstrates outstanding capability in processing polyamide (PA12 and PA11), polypropylene 

(PP), and thermoplastic polyurethane (TPU), even for intricate geometries [13]. The technology is 

based on a layer-by-layer approach, where powder particles are selectively sintered by a laser beam 

following cross-sectional patterns derived from digital models. After each layer is solidified, the build 

platform is lowered to allow the deposition of a new powder layer. In contrast to PBF-LB/M, where 

the powder is fully melted, polymer-based PBF operates at lower temperatures that cause the 

particles to partially fuse rather than completely liquefy. The temperature is typically kept just below 

the melting point of the material being processed, while the build chamber is heated close to the glass 

transition temperature to minimize thermal stresses [14] Furthermore, the morphology and 

flowability of particles strongly influence the quality of powder spreading and, consequently, the 

thermal homogeneity of polymer-based PBF. Recent machine learning pipelines using SEM images 

demonstrate that automated particle shape classification (e.g., YOLO-based) can reveal critical 

distribution patterns for polymer stability [15]. Despite these advances, polymer-based PBF remains 

susceptible to thermally induced defects. One of the most common issues is curling, which is caused 

by differential thermal gradients and non-uniform cooling. Such distortions can compromise 

recoating processes and structural performance. The accumulation of residual stresses across 

successive layers highlights the need for advanced in situ monitoring and control methodologies. 

Effective thermal management, through stable chamber conditions and controlled cooling cycles, is 

essential to minimize warping and achieve dimensional accuracy. However, the limited availability 

of open-access datasets for polymer-based PBF continues to hinder the systematic benchmarking of 

competing models.  

2.2. Deep Learning in Additive Manufacturing 

Integrating DL techniques into AM has significantly improved both predictive modelling and 

real-time defect detection. Unlike manually designed feature-based models, DL-based models 

automatically extract hierarchical representations from raw sensor outputs and imaging modalities, 

demonstrating improved accuracy and generalization capabilities [2]. 

2.1.1. Supervised CNNs: VGG16, ResNet50, and Xception 

Convolutional neural networks (CNNs) are one of the most significant architectures for feature 

extraction in computer vision [16]. Several advanced versions of CNNs have been developed based 

on this primary architecture, including VGG16 [17], ResNet50 [18], and Xception [19]. These models 

have demonstrated excellent performance in image classification tasks and have been used 

productively in AM for in-situ monitoring based on infrared thermal and melt pool imagery. For 

example, Klamert et al. achieved 99.1% accuracy and a 97.2% F1 score using VGG16 to detect curling 

defects on thermal recordings in polymer-based PBF [20]. However, these main accuracies are 

typically in balanced, carefully selected data sets; multiple-label co-occurrence and class imbalance 

in real-world occupations degrade generalization and require metrics that go beyond accuracy (e.g., 

F1 class ROC-AUC) and reliability [8]. However, practical problems in AM are often due to the lack 

of available training data and the imbalance of datasets, and high accuracy is usually achieved only 

with a balanced dataset [21–23]. However, these CNN models' reliance on carefully selected and 

balanced data sets raises questions about their resilience to industrial noise. 

2.1.2. CNN-LSTM Hybrids for Modeling 

Research into metal-based PBF processes has demonstrated the effectiveness of LSTM in 

tracking instabilities caused by spatter formation over extended periods using acoustic signals. These 

signals correlate with plasma plume dynamics during the melting process; frequencies around 25 

kHz, in particular, show a strong correlation with melt pool behavior. Hybrid models achieved 

85.08% classification accuracy in spatter detection using acoustic signals, demonstrating the 

feasibility of low-cost monitoring approaches. [24]. A CNN-LSTM model was successfully applied 
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for progressive defect detection, and research into acoustic signals based on PBF-LB/M has revealed 

that LSTMs are effective in tracking instabilities induced by spatter over time [22]. In polymer-based 

PBF settings with low signal-to-noise ratios and limited time labels, sequence models should be 

combined with class balance handling and uncertainty estimation; otherwise, the added latency and 

training complexity may not be worth the benefits in the field [25]. Although CNNs excel at spatial 

pattern recognition, they lack the inherent capability to capture the temporal dependencies that are 

crucial for process monitoring. To address this, hybrid architectures that combine CNNs with 

recurrent neural networks (RNNs), specifically long short-term memory (LSTM) networks, have been 

developed. CNN-LSTM models use CNNs to extract spatial features while using LSTMs to model 

temporal sequences, enabling the detection of time-evolving anomalies [26]. Nevertheless, the extent 

to which CNN-LSTM approaches can be scaled up for long-duration builds involving millions of 

frames is not yet fully understood. 

2.1.3. Generative Models: Autoencoders and GANs 

Autoencoders (AEs) and generative adversarial networks (GANs) have emerged as important 

unsupervised networks for detecting AM anomalies. AEs compress input data into lower-

dimensional latent spaces, which are then reconstructed. Any deviations between the original and 

reconstructed data are highly effective identifiers of anomalies [27]. Recent work has demonstrated 

the potential of AE-based networks for detecting metal AM anomalies in images, with reconstruction 

error rates of 5.2% or less at interface boundaries [28]. Concurrently, GANs (generator and 

discriminator networks) serve two purposes: data augmentation and anomaly detection. They have 

also been used to address the common issue of class imbalance in the production of sensor signals, 

resulting in increased insensitivity of a classifier [29,30]. Extensions of the fundamental GAN 

construction, for example, those involving three-player GANs with an additional auxiliary classifier 

alongside the generator and discriminator, have even outperformed traditional oversampling 

methods such as SMOTE in cases of extreme imbalance [29]. Although much has been learned from 

research, the scope of the technique's real-world application is nevertheless limited due to issues of 

learning instability, mode collapse, and limited interpretability. These phenomena are particularly 

prominent when anomalous cases are scarce or inconsistent [21]. Addressing GAN instability and 

mode collapse when applied to highly imbalanced defect data is a key area for future research. 

2.1.4. Physics-Informed Neural Networks (PINNs) 

Physics-informed neural networks (PINNs) are a new approach that incorporates governing 

physical laws, typically expressed as partial differential equations (PDEs), into applications involving 

heat transfer during the learning process. By incorporating these constraints into the loss function, 

PINNs significantly reduce reliance on extensive datasets while enhancing the accuracy, 

generalizability, and interpretability of predictive models [12]. In AM, there has been an increasing 

focus on the advantages of PINNs for thermal simulation and process control. Safari et al. 

demonstrated the application of PINNs to predicting multi-track LPBF temperatures, achieving 

highly accurate results at a much lower computational cost than conventional finite element methods. 

In addition to forward simulations, PINNs are well-suited to inverse problems, such as determining 

process parameters from real-time thermal data. This is a prerequisite for closed-loop control of AM 

[31]. Subsequently, A physics-informed machine learning (PIML) model for PBF was introduced by 

combining PDE-based thermal modelling and data-driven neural networks, resulting in a hybrid 

model. This approach enabled effective temperature prediction and real-time parameter estimation. 

The dual-functional model has the potential to optimize polymer-based PBF process parameters 

through PINNs, whereas traditional thermal models are limited in terms of computation and 

accuracy [32]. In addition to academic research, recent studies have examined the potential of 

combining transfer learning with physics-informed neural networks (PINNs) to estimate melt pool 

geometry at a significantly lower computational cost [33]. These approaches suggest the possibility 

of real-time monitoring and adaptive control in PBF. More broadly, such physics-informed machine 
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learning (PIML) hybrids and PINNs highlight the transformative potential of predictive simulation 

in additive manufacturing, enabling the solution of inverse problems and advancing closed-loop 

control by bridging the gap between high-fidelity thermal modelling and real-time process 

optimization. Yet, the computational overhead of multi-physics PINNs may limit their scalability. 

This could affect full build-chamber monitoring. 

2.3. Challenges and Knowledge Gaps 

Although there have been some remarkable advancements, there are still some challenges that 

prevent the widespread implementation of DL for AM applications. 

• Limitations of data: A common barrier at the level of large-scale, high-quality labelled data 

persists, particularly in the case of rare defects. Although generative models and synthetic data 

augmentation techniques can improve class balance, concerns remain about the validity, 

representativeness, and generalizability of artificially generated data [34]. The imbalance 

between the abundance of normal process data and the scarcity of defect data makes it difficult 

to train models stably.  

• Computational Needs:  Advanced DL models, such as residual networks (ResNet) and 

generative adversarial networks (GANs), are computationally expensive, which limits their 

potential for real-time in-situ control and monitoring in industrial systems [31]. The trade-off 

between model intricacy and inference delay poses a significant challenge to scaled deployment. 

• Deficits in Interpretability: Current DL models are, for the most part, 'black boxes', making it 

difficult to extract physically understandable explanations from their predictions. This lack of 

transparency hinders their adoption in safety-critical applications such as aerospace and 

healthcare, where explainability and accountability are prerequisites [35]. Although recent 

advancements in interpretable machine learning (IML) have begun to address this issue, 

practical implementation into AM workflows remains limited. Nevertheless, studies have 

shown that the application of gradient-weighted class activation mapping (Grad-CAM) 

substantially improves the transparency and interpretability of CNN predictions and their 

underlying results [20]. 

• Domain Generalization: The performance of DL models deteriorates when tested in unseen 

domains, including variations in material properties, machine hardware, or processing 

conditions not observed in the training dataset. Increasing the amount of data or model size does 

not improve out-of-distribution generalization, suggesting fundamental flaws in current 

architectures [36]. 

• Physics-Constrained Limitations: While physics-informed machine learning and, more 

specifically, PINNs offer a means of offsetting data inadequacy and achieving greater 

generalizability, they also present new challenges. multi-physics PINN models for thermal field 

predictions in PBF also exhibit instability during the learning process and require careful 

balancing between data-driven learning and PDE-constrained modelling. Currently, these 

challenges, coupled with the high computational overhead for complex geometries, limit the 

scalability of these models in real-time industrial applications [32]. 

To address these challenges, promising research directions include physics-informed learning 

approaches that incorporate governing equations into the learning process [31,32], self-supervised 

learning to reduce the reliance on labelled data, and domain adaptation methods to enhance process 

robustness in changing conditions. Furthermore, the development of lightweight, multimodal, and 

physics-constrained models is rapidly becoming essential for the scalable, explainable, and real-time 

quality assurance of next-generation AM systems [34]. A method for working out the balance 

between how accurate a model is, how easy it is to understand, and how long it takes to run is still 

needed. 
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3. Methodology  

When applying DL to AM, it is important to pay particular attention to data acquisition and 

preprocessing, network structure design, and systematic evaluation methods. In this section, we 

highlight shared routines and distinctive methods among supervised, unsupervised, and physics-

informed approaches by combining methodological insights from recent case studies. 

 

Figure 1. A conceptual framework that links data acquisition, deep learning architectures, and quality control 

for the industrial deployment of PBF-LB monitoring systems. 

3.1. Data Acquisition and Dataset Preparation 

Strong and sturdy datasets form the basis for any successful DL model. In the case of AM, two 

prominent data modalities come into play: optical/thermal imaging and process sensor logs. High-

definition infrared (IR) imaging has proven very useful for capturing thermal dynamics for polymer-

based powder bed fusion. For example, a FLIR T420 thermal camera operating at 30 frames per 

second has been used to generate over 144,000 thermal frames for a single build, capturing layer-wise 

heating and cooling cycles [32]. Complete print sequences for CNN–LSTM–based video classification 

have also been recorded using IR imaging [22]. Large-scale infrared image datasets of up to 100,000 

images have been constructed and grouped into “good” vs. “bad” states based on curling faults [37]. 

In these studies, only the collected data were analyzed, while the sensor integration and setup were 

carried out separately. Furthermore, a low-cost RGB camera solution combined with a custom CNN 

achieved over 99% accuracy in real-time defect detection for polymer-based PBF-LB/P [20]. The data 

preparation typically included layer-specific events (e.g., powder deposit, laser scanning, and 

cooling) and label assignment subsequently. Supervised labor relied on explicit defect regions 

annotation, while Esmaeel concentrated on unsupervised anomaly detection, computing feature 

vectors such as temperature distribution properties for cluster exploration and autoencoder-based 

reconstruction [21,22,37,38]. A common challenge for everyone was class imbalance, since defective 

events are several times less frequent than a regular set of operations. Alleviation techniques included 

under sampling and oversampling at random [22], data augmentation [37], and restricted dataset 

experiments for model robustness testing. However, the robustness of these datasets is not yet fully 

validated. This is in terms of varying process conditions and machine vendors. We will adopt best 

practices reporting on data management (detailed class distribution, leak-free distribution, and 

multilabel protocols) to mitigate the optimistic bias often observed in AM data sets [8].  

3.1.1. Camera Integration 

Camera integration in polymer laser powder bed fusion (PBF-LB-P) has emerged as a viable but 

technically demanding route for the real-time quality monitoring of laser beams. Low-cost RGB 

cameras provide effective surface and corrosion control with a moderate integration effort and 

achieve >99 percent classification accuracy for surface defects when combined with CNNs [20]. 

However, thermal field observations and the dynamics of the melting pools require infrared or high-
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speed pyrometry, which poses problems such as emissivity calibration, complexity of optical 

pathways, and large amounts of data, which require high-performance computing [39,40]. The 

reviews consistently highlight that the dominant obstacles to camera-based monitoring in industrial 

polymer systems are optical access limitations, time and spatial resolution trade-offs, and calibration 

and synchronization with scanning motion [41]. These limitations are compounded by environmental 

hazards - dust from gunpowder, reprocessing, and laser interference, which increase the need for 

maintenance and require protective coverings and periodic recalibration [42]. Despite these 

difficulties, the literature shows successful implementation when sensing methods are aligned with 

the physical defect mechanisms of interest. For example, profilometry was used to quantify the 

thickness, density, and curl of the polymer PBF with an active feedback for closed-loop control [42], 

and off-axis IR thermography correlated the temperature maps at the layer level with the detection 

of micro-CT defects [39]. Coaxial two-wavelength pyrometry offers quantitative thermometry of the 

melting pool, but requires expensive optics and computing infrastructure [40]. A pragmatic approach 

recommended by several studies is to start with low-cost RGB monitoring for surface-related 

coatings, then to gradually integrate profilometry or off-axis IR for thermal analysis in advanced 

applications, where the cost is justified by the quantitative melt pool data [43,44]. Overall, the 

integration of cameras in the polymer PBF-LB+P system represents a balance between cost, 

complexity, and monitoring objectives, with algorithmic pre-processing and selective data reduction 

emerging as key enablers for the practical industrial take-up. However, despite reported 

achievements, current studies often lack systematic cost-benefit analysis and long-term industrial 

validation, which limits the transferability of laboratory-based monitoring strategies to robust 

polymer PBF systems on a production scale. 

Table 1. Summary of camera modalities for polymer PBF-LB/P monitoring. 

Modality 

Typical 

mount and  

access 

What it 

measures 

Key  

advantages 
Key constraints 

Industrial  

readiness 

RGB / off-

axis 

industrial 

camera[20] 

Fixed internal 

mount 

viewing bed 

after recoating 

or post-

exposure 

angles; 

sometimes 

mounted on 

recoater or 

inside the 

cabinet 

Powder bed 

surface, 

coating 

defects, part 

outline 

Low cost, 

whole-bed 

coverage, 

effective 

with CNNs 

for coating 

defects 

Cannot see 

subsurface/thermal 

signatures; 

sensitive to 

lighting and 

powder glare 

High - 

already 

implemented 

in 

commercial 

research 

setups 

Off-axis IR 

thermal 

camera[39] 

Window/port 

or dedicated 

optic with a 

view of the 

slice; often off-

axis to avoid 

scanner optics 

Surface/inter 

pass 

temperatures 

and thermal 

maps of the 

entire slice  

Wide 

thermal 

field maps, 

layer-wise 

temperature 

distribution 

useful for 

Requires 

calibration, 

emissivity 

assumptions; 

lower spatial 

resolution than 

visible cameras  

Medium - 

feasible, but 

calibration 

and cost are 

barriers 
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defect 

correlation 

Coaxial 

high-speed 

pyrometer / 

two-

wavelength 

camera[40] 

Coaxial or 

common-optic 

assembly 

aligned with 

process laser 

or aperture-

division optic 

Quantitative 

melt pool 

temperature 

profiles, 

dynamics at 

high fps 

(>10k–30k 

fps)  

Direct melt 

pool 

temperature 

monitoring 

and high 

temporal 

resolution  

Complex optical 

integration 

(coaxial paths), 

expensive sensors, 

and HPC for data 

processing  

Low - 

technically 

powerful but 

costly and 

not yet 

widespread 

in industry 

3.2. Model Architectures and Training Strategies 

In AM research, thermal imaging data have been the primary modality for defect detection in 

PBF-LB/P, and are used to inform the design of model architectures across supervised and 

unsupervised learning paradigms. Thermal recordings of polymer powder-bed fusion builds are 

used as the basis for detecting anomalies such as curling, delamination, or coating failures. 

• Supervised image-based classification has been used extensively with pre-trained CNNs (e.g., 

VGG16, ResNet50, Xception), with shallower models such as VGG16 showing superior 

performance (99.1% accuracy, 97.2% F1-score) on thermal datasets [37], and extended to hybrid 

CNN–LSTM models to capture spatio-temporal patterns in thermal video sequences, with 97.6% 

accuracy [22]. 

• In the Anomaly detection without supervision method, the performance of clustering methods 

(K-Means, DBSCAN) and deep generative models (autoencoders, GANs) was compared for 

detecting curling directly from thermal image data of PBF-LB/P builds. Clustering achieved 97% 

accuracy and semi-supervised hybrids (clustering + deep classification) 99.7%, while 

unsupervised GAN-based detection was less stable (≈87%) due to reconstruction difficulties in 

thermal domains [21]. 

• For Physics-informed modeling, heat-transfer PDEs were embedded into Physics-Informed 

Neural Networks (PINNs), using thermal measurements from powder-bed builds as 

supervision and constraints (BCs/ICs and PDE residuals in the loss), yielding physically 

consistent thermal-field predictions and improved convergence on simplified and real 

geometries [32]. 

In these studies, TensorFlow/PyTorch/Keras were employed and losses specific to the thermal-

imaging domain were applied (cross-entropy for CNNs, reconstruction for autoencoders, adversarial 

for GANs, physics-based residuals for PINNs). However, training was offline, indicating a need for 

online/adaptive detection. Additional improvements include data-efficiency strategies when thermal 

recordings are sparse, with recent lines showing training-free segmentation of layer images and 

layer-wise 3D powder-bed reconstruction as complementary inspection tools without learning 

weights (e.g., low-cost optical camera + CNN workflows in PBF-LB/P [20], and a Grab Cut-based, 

training-free pipeline validated for PBF-LB/M (metals) that reconstructs fused geometries and detects 

recoater defects [45].  

Together, these advances underline that thermal imaging remains the primary data source for 

PBF-LB and PBF defect detection, while training-free optical strategies can enhance reliability when 

data is limited and pave the way for practical online monitoring. 

3.3. Evaluation Protocols 

Assessment methods included singleton train/test splits, often involving entire print jobs for 

validation for a test of generalizability. Following the new evaluation guidelines in AMML, we report 
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on individual accuracy, recall, F1 under multiple label imbalances, ROC-AUC, calibration curves, 

and drift checks between tasks, in accordance with the latest [25]. Metrics varied by task: 

Classification models reported accuracy, precision, recall, and F1-scores (Ribeiro: 97.6% accuracy, 

precision 100%, recall 47.1%; Schmid-Kietreiber: 99.1% accuracy, F1-score 97.2%) [22,37]. Anomaly 

detection approaches assessed reconstruction error and tested clustering validity (Esmaeel: clustering 

97%, GAN 87%) [21]. PINN models were validated using experimental thermal sensor data by 

adopting RMSE and PDE residual minimization as measures of performance [32]. Furthermore, 

interpretability was addressed: Schmid-Kietreiber applied Gradient-weighted Class Activation 

Mapping (Grad-CAM) for visualization of salient image regions that influence CNN decisions, 

allowing necessary transparency for implementation in industry [37] . 

3.4. Synthesis 

The above-mentioned works demonstrate methodological diversity for DL for AM: 

CNNs and CNN–LSTM models dominate supervised defect detection, leveraging large 

annotated thermal datasets. They provide tenable alternatives in case there are few labels, while 

stability is a drawback. Physics-informed neural networks hold much promise and combine 

knowledge from the field by reducing data requirements and preserving physical believability. 

Simultaneously, the methods reveal the potential of DL for quality control in AM while also 

echoing persistent challenges, that is, dataset imbalance, instability in the GAN algorithm, and 

computer resource needs for real-time applications. Still, the lack of standardized evaluation 

benchmarks complicates cross-study comparability, which is a problem that must be addressed. 

4. Comparative Results  

Deep learning has demonstrated significant potential in supporting both quality control and 

predictive modelling in AM, particularly in polymer-based powder bed fusion. Collectively, the 

research studies emphasize how architectures address complementary aspects of process 

predictability and defect detection, from the level of convolutional networks to that of physics-

informed models. 

4.1. CNN-Based Defect Detection 

Convolutional neural networks remain the most reliable instrument for classifying defects in 

images. A fine-tuned VGG16 model demonstrated that using infrared PBF-LB/P layer images 

achieved an accuracy of 99.09% and an F1 score of 0.972, recognizing curling defects with almost 

perfect reliability. In contrast, deeper architectures such as ResNet-50 and Xception performed poorly 

under class imbalance, achieving only 16.58% accuracy [37,38]. These results confirm once again that, 

in the AM environment, where thermal image cues are weak and data sets are small, model simplicity 

and dataset suitability can outweigh architectural novelty. Furthermore, CNNs are amenable to 

interpretability in the form of saliency maps that identify curling regions, enabling their use in real-

time quality monitoring. This suggests an urgent need to move beyond accuracy metrics towards 

those that reflect real-world risk sensitivity, such as the number of false negatives in industries where 

defects are critical. 

4.2. Temporal Modeling with CNN-LSTM 

To capture time dynamics, a CNN-LSTM was integrated into infrared video streams. The 

network achieved a cumulative accuracy of 97.64% and perfect precision (100%), but recall was only 

47.08%. This imbalance suggests that the detector is conservatively reliable in cases involving 

significant anomalies, but potentially liable to overlook minor or preliminary-stage imperfections 

[22]. Although time-based modelling improves detection by integrating process evolution across 

frames, experiments show that it only works when a large defect is present. Balanced datasets are 

superior to simpler frame-based CNNs as they are sequence models. In practice, CNN-LSTMs show 
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promise in detecting sequence-sensitive imperfections, but they are less robust when class imbalance 

is not alleviated. 

4.3. Unsupervised Techniques / Generative Models 

Ways of reducing reliance on labelled data using unsupervised approaches have been 

investigated. K-means clustering achieved an accuracy of around 97% in detecting curling; however, 

when used alongside a semi-supervised deep classifier, performance improved to 99.7%, 

approaching the level of full supervision. In contrast, deep autoencoders and GANs only achieved 

around 87% accuracy and did not generalize well to unknown datasets [21]. These findings suggest 

that, while generative models can potentially detect anomalies within their training domain, they are 

themselves unstable and very dataset-specific. Traditional clustering, in conjunction with weak 

supervision, performed better, highlighting the importance of data structure and feature engineering 

in AM anomaly detection. 

4.4. Physics-Informed Neural Networks for Thermal Prediction 

In addition to classification, a physics-informed neural network (PINN) has been developed to 

predict thermal fields in PBF. By embedding heat transfer equations in the loss function, the network 

achieved a root mean square error (RMSE) of ~1.3 K, while reducing the computational cost by up to 

70% compared to finite element calculations. In addition to modelling thermal distributions with high 

fidelity, the PINN enabled inverse analysis to deduce latent process parameters such as laser power, 

scanning speed, and hatching strategy [32]. This dual functionality, in both forward simulation and 

discovering parameters, demonstrates the particular suitability of physics-informed learning for 

predictive maintenance and real-time process optimization. 

4.5. Synthesis and Practical Implications 

Overall, the results demonstrate the strengths of each approach, which complement those of the 

others. CNNs offer highly accurate, real-time detection of spatial anomalies, while LSTM hybrids can 

observe temporal dynamics, although they are prone to imbalance. Unsupervised techniques reduce 

the need for labelling, but lack robustness. PINNs offer computationally efficient, physically realistic 

thermal forecasts that are optimal for predictive control. Thus far, hybrids, including sensor fusion 

CNNs or semi-supervised clustering with deep classifiers, have achieved the highest accuracies, 

suggesting that integrating more than one approach offers the greatest promise for robust 

deployment in industry. If CNNs underperform in a minority of classes (e.g., deformity or powder 

deficiency), this reflects the class frequency bias reported in industrial data sets; stratified sampling 

and cost-sensitive losses mitigate this problem but do not eliminate it [8]. In line with recent best 

practice guidance, the evaluation should go beyond single precision scores to include class-related 

metrics, cross-validation and reproducibility checks, ensuring comparability across independent 

studies [46].  

Table 2. Summary of the application of deep learning to AM, as cited in the references. 'Acc' = accuracy; 'F1' = 

F1 score. Ribeiro and Schmid-Kietreiber addressed the classification of defects using imaging data, while 

Esmaeel concentrated on defect detection in an unsupervised setting. Aydemir developed a physics-based 

regression model for thermal fields. 

Method Application 
Data 

Source 
Performance  Strengths Limitations 

VGG16 CNN 

[37,38] 

Defect 

detection 

(thermal 

images) 

IR images 

Acc. = 

99.09%; F1 = 

0.972 

High 

accuracy, 

interpretable 

via Grad-

CAM 

Requires 

labeled data; 

domain-

specific 
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CNN-LSTM [22] 

Sequence-

based defect 

detection 

IR video 

sequences 

Acc. = 

97.64%; Prec. 

= 100%; Rec. 

= 47.08% 

Captures 

temporal 

trends; no 

false alarms 

Misses subtle 

defects; 

imbalance 

sensitive 

K-Means + 

Classifier [21] 

Semi-

supervised 

anomaly 

detection 

Thermal 

features 
Acc. = 99.7% 

Minimal 

labels 

required; 

robust 

within the 

dataset 

Weak cross-

dataset 

generalization 

GAN/Autoencoder 

[21]  

Unsupervised 

anomaly 

detection 

Thermal 

images 
~87% Acc. 

Works with 

unlabeled 

data; fast 

inference 

Training 

instability; 

poor 

generalization 

PINN [32]   

Thermal 

prediction & 

parameter ID 

Simulation 

+ IR data 

RMSE ≈ 1.3 

K; 70% faster 

than FEM 

Physics-

constrained; 

interpretable 

Complex 

training; 

scaling 

challenges 

5. Discussion 

Interconnection of laboratories requires standardized data sets with shareable label taxonomy 

and reproducible distribution; without these resources, the comparison between paper and real-life 

results remains inconclusive. [9]. A comparison of deep learning methods in AM shows that none of 

these approaches offers a universally optimum solution. Each approach has its own strengths and 

weaknesses, and its suitability depends on the type of monitoring mission, the availability of data, 

and the limitations of deployment. 

• Convolutional Neural Networks: CNNs are by far the most advanced and effective technique 

for detecting spatial defects in AM. Several studies have achieved an accuracy of 95–99% in 

discriminating between melt pool anomalies and curling defects using image data [23,38]. The 

main advantage is their ability to automatically extract spatially informative features, such as 

heat signatures and irregularities in contour shapes, while enabling fast inference suitable for 

real-time deployment. However, CNNs are standalone image processors, which limits their 

ability to interpret time evolution. Furthermore, performance is still very much dependent on 

the size and variety of the training dataset employed. In practice, the small number of defect 

instances in AM datasets remains a bottleneck, thus making transfer learning beneficial, albeit 

imperfect. 

• Recurrent Networks: Time models in the form of long short-term memory (LSTM) networks 

augment the strength of CNNs by integrating sequential knowledge, thereby enabling the 

detection of slow-moving anomalies that evolve at various levels. That CNN-LSTM 

demonstrated variants can detect subtle time patterns with high accuracy and precision when 

provided with balanced datasets, though recall is low. This highlights their strengths and 

weaknesses: while sequential modelling improves defect detection, it increases the complexity 

of training and computation, as well as introducing latencies in time-based monitoring [22]. 

Unless the architecture is carefully balanced and fine-tuned, LSTMs tend to ignore rare yet 

significant defect occurrences. 

• Generative Models: When labelled data are unavailable, which is not uncommon in AM, weakly 

supervised and unsupervised autoencoders (AEs) and GANs hold great promise. They can 

identify patterns that deviate from the 'normal' patterns they have learned and can even produce 

synthetic defect patterns to augment training sets [21]. Semi-supervised classifiers combined 

with clustering achieved an accuracy of up to 99.7%, demonstrating the potential of hybrid 

unsupervised approaches. However, fully unsupervised GANs and AEs tended to 
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underperform, achieving ~87% accuracy, due to their training instabilities and limited 

generalizability to new, unseen datasets. This suggests that weakly supervised approaches 

complement rather than replace supervised CNN approaches for high-stakes defect detection. 

• Physics-Informed Neural Networks: Unlike purely data-driven models, which exclude 

governing physical laws from the learning process, PINNs incorporate these laws, offering a link 

between physics-based simulations and machine learning. PINNs can achieve thermal field 

prediction errors as low as ~1.3 K, while reducing computational time by up to 70% compared 

to high-fidelity finite element models. Their ability to perform both forward prediction and 

inverse parameter identification demonstrates their value for predictive maintenance and 

process optimization [32]. However, PINNs require careful loss weighting and are 

computationally expensive during training. They also struggle with multi-physics phenomena. 

Despite these limitations, their ability to generalize beyond the training domain makes them 

highly promising for industrial applications. 

• Integration and Hybridization: The above discussion suggests that these methodologies are not 

necessarily mutually exclusive. CNNs can provide rapid, high-accuracy, image-based 

monitoring, while LSTMs can extend detection into the time domain. GANs and AEs can offer 

either synthetic data or unsupervised anomaly detection, and PINNs can provide physically 

consistent predictions to enable process control. There is an increasing number of references to 

hybrid and multimodal approaches that combine these strengths, such as multi-sensor fusion 

CNNs [47] and semi-supervised GAN-classifier pipelines [21]. Such approaches may offer the 

robustness and flexibility required for deployment in industrial PBF-LB/P environments. 

Nevertheless, there are still questions about how these hybrid pipelines can be practically 

integrated into existing manufacturing workflows without disrupting throughput. 

• Multi-Sensor Fusion and Hybrid Frameworks: Recent advances in fault detection for PBF-LB 

highlight the combination of multiple sensing methods and machine learning to overcome the 

limitations of sensor-based monitoring. Multi-sensor fusion incorporates complementary 

physics, optical emissions, thermal fields, acoustic vibrations and three-dimensional geometry 

to capture orthogonal defect signature signatures. Studies show that the combination of near-

infrared and CNN imaging provides the highest accuracy for predictions, while the combination 

of acoustic and optical components allows for the sub-millisecond detection of transient keyhole 

events [48]. Similarly, 3D segmentation of the point cloud by indirect 2D projection improves 

the detection of small defects and high resolution thermography strongly correlates with micro-

CT porosity [39,49,50]. Machine learning approaches combine deep CNNs, feature-based 

ensembles, transfer learning and hybrid classifiers, balancing the feasibility of real time with the 

interpretability of the data. Gradual reinforcement of engineered thermal properties has proven 

effective for predicting porosity, while transfer learning reduces data requirements and 

improves the adaptability of the model to new fault classes [51,52]. In addition to detection, 

hybrid frameworks combine in-process monitoring with repair and control of the process. Local 

reassembly strategies restore density and reduce missing fusions, while closed loop parameter 

modifications with deep learning support reduce the severity of defects in polymer and 

composites systems [53,54]. Post-processing inspection, in particular micro-CT, provides the 

basic factual basis for model validation and training, and the voxelized thermal-CT fusion 

enhances porosity prediction [51]. Despite these advances, challenges remain, in particular in 

the production of large-scale labelled data sets, the synchronization of heterogeneous sensor 

signals, and the validation of closed-loop remediation under industrial conditions. Future 

priorities include standardized multi-modal data sets with CT ground truth, lightweight mobile 

ML models, physics-based interpretation capability, and certified integration of detection with 

in-process repair processes, from fault detection to guaranteed quality in polymer PBF [55,56]. 

Despite the integration of supplementary sensors and advanced machine learning models, in 

situ monitoring of PBF-LB is often hampered by the difficulty of obtaining synchronized, high-
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reliability, multi-modal data and the lack of comprehensive data sets on the ground to train and 

validate the models [57]. 

• Implications: A primary implication is that AM monitoring is evolving from simple threshold-

based controls and subjective human inspection to a level where algorithms can detect fine 

thermal or geometrical anomalies with a performance that often surpasses that of humans. 

However, problems remain in terms of generalization, interpretability, and implementation in 

real-time workflows. Future advances will likely rely on hybrid systems that use multiple classes 

of models, incorporate physics-informed constraints, and utilize multi-sensor streams. 

Overall, CNNs remain the gold standard for detecting spatial defects. LSTMs offer temporal 

depth, albeit at the cost of increased complexity. GANs and AEs reduce label dependence, but 

stabilization and hybridization are required. PINNs, meanwhile, offer new approaches to physics-

constrained simulation and predictive control. Hybridization between these methodologies, 

specifically designed for AM objectives, offers the most promise for providing practical, reliable, and 

scalable solutions. 

6. Future Outlook 

The use of DL applications in AM is set to increase significantly. However, technical limitations 

must first be addressed to enable wider implementation across industries. This article outlines the 

main ways to overcome current limitations and achieve real-time implementation while ensuring 

reliability and scalability. 

Table 3. Key challenges and potential solutions for applying deep learning to PBF-LB/P. 

Challenge Description Proposed Solutions 

Data Scarcity 
Lack of large, labeled datasets; rare 

defects are difficult to capture 

Self-supervised learning, GAN-

based augmentation, transfer 

learning 

Class Imbalance 
Abundance of normal process data 

vs. limited defect samples 

Oversampling/undersampling, 

anomaly detection with 

Autoencoders, and Few-shot 

learning 

Scalability & Latency 
Heavy DL models are not suitable 

for real-time industrial monitoring 

Edge AI deployment, FPGA/GPU 

acceleration, lightweight CNNs 

(MobileNet) 

Interpretability 

DL models act as “black boxes”; 

limited trust in safety-critical 

industries 

Explainable AI (Grad-CAM, SHAP, 

LRP), Physics-Informed Neural 

Networks (PINNs) 

Generalization 
Models often overfit specific 

machines, materials, or geometries 

Domain adaptation, federated 

learning, multi-material datasets 

Integration With 

Standards 

Industrial adoption is limited by a 

lack of standardized frameworks 

(ISO/ASTM) 

Hybrid digital twin + AI 

approaches, model certification 

under ISO/ASTM guidelines 

  

6.1. Data Limitations and Quality 

A persistent challenge in developing successful DL models for AM is the limited availability of 

extensive, high-quality, and diverse datasets. While there are millions of annotated photos in 
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computer vision, AM defect datasets are either scarce or proprietary. Future research will therefore 

focus on data-efficient learning. One answer to reducing data dependence is physics-informed neural 

networks (PINNs), which embed physical principles in model learning [32]. Another promising 

solution is transfer learning and domain adaptation; these techniques allow models trained on one 

machine or material to generalize to another with very little additional data [23]. Few-shot learning 

may even enable models to generalize to new defects based on just a few examples. Open datasets, 

in combination with benchmarking efforts, will accelerate progress; however, confidentiality remains 

an impediment from industry. Federated learning has been proposed as a way of sharing knowledge 

without distributing proprietary information [2]. 

6.2. Real-Time Inferencing and Edge Processing 

Using deep learning for real-time monitoring of additive manufacturing processes imposes 

stringent requirements on both computational speed and hardware resources. While most prior work 

outlines offline analyses utilizing high-performance GPUs [22,37] Commercial printers are equipped 

with only a few embedded processors. To address this, future research will use lightweight models 

such as MobileNet or EfficientNet variants coupled with compression and distillation techniques to 

enable use on edge devices [58,59]. Another promising route to high-throughput and low-latency 

inference, supporting high-resolution thermal and optical imaging, is FPGA or ASIC 

implementations for hardware acceleration [60]. Closed-loop control is emerging, albeit in its infancy. 

For instance, a CNN-based in-process warping detection platform for fused filament fabrication has 

been developed, enabling corrective action during printing [61]. Proofs of concept like this 

demonstrate the potential for real-time DL-based systems to provide feedback. In the future, 

interaction between streaming architectures and adaptive controllers will enable real-time defect 

correction. These developments suggest that, optimized architectures and hardware acceleration 

aside, real-time inference for DL in AM is feasible and approaching implementation in industry. 

6.3. Generalization and Robustness 

An important research task is to ensure that models trained under specific conditions remain 

trustworthy when confronted with new geometries, machines, or environmental variations. Domain 

shifts are ever-present in AM, and models are most likely to malfunction when they are taken outside 

of the training distribution [21]. Domain randomization and advanced data augmentation can 

improve robustness, whereas PINNs can generalize better under physical constraint-based 

predictions [21,32]. Another avenue is uncertainty quantification: Bayesian DL and ensemble 

modelling can provide confidence intervals, enabling operators to determine when to trust AI 

outputs and when to rely on human judgement or non-destructive evaluation (NDE) methods. 

6.4. Interpretability and Trust 

For safety-critical AM environments to adopt them, stakeholders must be able to trust the 

outputs of the models. Explainable AI (XAI) tools, such as Grad-CAM, have been used to identify the 

areas responsible for defect classifications [20,37,38]. Future systems should improve upon this by 

providing human-interpretable outputs, such as the type and severity of defects and their precise 

location in the build. PINNs are inherently interpretable due to their physically consistent outputs, 

whereas most purely data-driven models can be interpreted post hoc. Interactive dashboards that are 

transparent in their reasoning will enable DL to be adopted in engineers’ decision-making processes. 

6.5. Integration and Scalability 

As AM scales up to larger parts and longer prints, tracking becomes a significant data challenge. 

Hybrid edge–cloud systems will emerge, combining local models in the printer for rapid decision-

making with cloud systems for advanced analysis, predictive modelling, and digital twin simulations 

[47]. Digital twins, driven by PINNs and continually improved with sensor readings, can provide 
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real-time 'what if' predictions to inform adaptive control systems. Reinforcement learning can also be 

used for parameter tuning, whereby an agent progressively learns the optimal process conditions in 

simulated environments [61]. 

6.6. Towards Standards and Industrial Adoption 

Ultimately, establishing validation protocols and formulating global standards will be crucial 

for industry adoption. Conducting round-robin tests on standardized constructions with 

intentionally introduced flaws may become standard practice for validating DL-based monitoring 

tools [60]. Organizations such as ASTM and ISO are currently developing guidelines for AI in the 

manufacturing sector. The development of trustworthy, validated, and explainable AI systems will 

significantly influence the level of industry adoption. The adoption of AI-driven quality control in 

AM across different industries will continue to be fragmented unless there is consensus on validation 

protocols. 

7. Conclusion 

Deep learning is set to transform AM by evolving open-loop systems into intelligent, adaptive, 

closed-loop configurations. This transformation promises not only technical progress but also 

measurable economic benefits, including reduced scrap rates, lower material and energy 

consumption, and a more sustainable production chain. This paper outlines the use of various deep 

learning architectures, including CNNs, LSTMs, GANs, autoencoders, and PINNs, to address key 

AM issues such as defect detection and thermal simulation. However, process control is not 

implemented in this work; the above-mentioned approaches focus only on process monitoring and 

defect detection, as active control of machine parameters was not possible with the available 

equipment. The comparison highlights the unique strengths of each model category: CNNs and 

CNN-LSTM deliver exceptional performance in defect detection by leveraging both thermal and 

imagery data streams. The semi-supervised and unsupervised variants diminish dependence on 

labelled datasets while facilitating broader application to raw process outputs. Beyond their technical 

performance, these models help minimize material waste and reduce rework, thereby improving cost 

efficiency and supporting resource conservation. PINNs enhance predictive accuracy by integrating 

domain-specific physics into models, thereby increasing both generalizability and user confidence. 

However, no single model offers a comprehensive solution. Evidence suggests that hybrid systems, 

which combine the strengths of different models, are more effective. These systems merge data-

driven learning with physics-informed reasoning to achieve predictive control and anomaly 

detection. However, there are still challenges to overcome: achieving generalization across diverse 

geometries, machines, and materials; enabling low-latency, real-time inference within the constraints 

of industrial hardware; and establishing rigorous validation and interpretability standards for 

models in safety-critical scenarios. In addition to these technical hurdles, economically viable 

implementations and resource-efficient process designs will be key to enabling adoption on an 

industrial scale, particularly for energy-intensive AM applications. These challenges require 

algorithmic advancements and systems integration, including sensor fusion and user-focused 

interface enhancements. Deep learning has already brought measurable value to the additive 

manufacturing (AM) world by reducing defects, improving process knowledge, and enabling 

proactive quality control. As the field of research matures further, the convergence of AI and AM will 

deliver the next generation of 'smart' manufacturing systems. In this future landscape, machines will 

observe every layer in real time, learn from each build, and respond immediately to maintain quality. 

Such systems will facilitate broader adoption in sectors such as aerospace and biomedicine, where 

reliability and high accuracy are paramount, and realize the full transformative potential of additive 

manufacturing as a production technology. So, the most important thing for progress in this field is 

to keep working to bring algorithmic innovation and industrial feasibility closer together. Crucially, 

these systems will not only enhance reliability and accuracy in sectors such as aerospace and 

biomedicine but also help meet global sustainability targets by minimizing waste, optimizing energy 
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usage, and lowering overall production costs. The most important factor for progress in this field is 

therefore to bring algorithmic innovation, industrial feasibility, and sustainability considerations ever 

closer together. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AM  Additive Manufacturing 

DL  Deep Learning 

CNN  Convolutional Neural Network 

RNN  Recurrent Neural Network 

LSTM Long Short-Term Memory 

GAN  Generative Adversarial Network 

PINN Physics-Informed Neural Network 

PBF-LB/P Powder Bed Fusion – Laser Beam of Polymers 

PBF-LB/M Powder Bed Fusion – Laser Beam of Metals 

AE  Autoencoder 

PDE  Partial Differential Equation 

PIML  Physics-Informed Machine Learning 

IR  Infrared 

Acc  Accuracy 

F1  F1 Score 

RMSE Root Mean Square Error 

XAI  Explainable Artificial Intelligence 

Grad-CAM Gradient-weighted Class Activation Mapping 

SHAP SHapley Additive exPlanations 

LRP  Layer-wise Relevance Propagation 

FPGA Field Programmable Gate Array 

ASIC  Application-Specific Integrated Circuit 

ISO  International Organization for Standardization 

ASTM American Society for Testing and Materials 
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