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Abstract

Autonomous Al agents are increasingly being deployed to perform complex tasks with limited
human oversight. Ensuring that the actions proposed or executed by such agents are safe, lawful, and
aligned with human values is therefore a crucial problem. This manuscript presents the Agent Action
Classifier: a proof-of-concept system that classifies proposed agent actions to reflect potential harm
and safety. The classifier is implemented as a compact neural model trained on a dataset of labeled
action prompts. We describe the design and implementation of the dataset, model architecture,
training procedure, and an evaluation protocol suitable for research and reproducibility. We report
qualitative findings and discuss the system’s limitations, deployment considerations, and future
research directions for robust, certifiable action supervision. The source code is available at
github.com/Pro-GenAl/Agent-Action-Classifier.
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I. Introduction

The adoption of autonomous Al agents in domains such as software automation, digital
assistants, and simulated environments has created new challenges for ensuring safety and
compliance [1,2]. Unlike traditional monitored pipelines, autonomous agents generate sequences of
proposed actions, plans, or requests that may be against ethical standards [3,4]. A lightweight but
effective mechanism to screen or flag potentially harmful actions can reduce risk and provide
actionable oversight [5]. Model Context Protocol (MCP) [6,7] provides a structured message format
that facilitates integration of tools, resources, and prompts into Al agents.
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Figure 1. Implementation of Agent Action Classifier in agentic Al systems.

A. Problem Definition
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This work introduces the Agent Action Classifier, a compact neural classifier designed to label
proposed agent actions as potentially harmful or safe. This work introduces an MCP-structured
labeled dataset of agent actions and a training pipeline to train the model on the dataset. Given a text
description of a proposed agent action prompt, API request, or sequence of steps, we produce a label
in a set of categories to indicate risk and an optional rationale behind the label. The classifier is
suitable for utilization if it identifies insecure actions with high recall while maintaining reasonable
precision to avoid excessive false positives that impede valid agent operation.

B. Related Work

Research on supervising Al spans multiple areas, including run-time monitors, policy
verification, reasoning, guardrails, and human-in-the-loop oversight [8-12]. LLM response
moderation systems provide architectures and training paradigms that can be adapted to action
classification. However, such methods are not cost-effective or adapted for actions.

I1. Methods

A. Model Architecture

The implementation employs all-MiniLM-L6-v2 [13,14] to map tokenized action text into a 384-
dimensional embedding space and apply a shallow feed-forward classifier based on a multi-layer
feed-forward neural network [15-17] with dropout [18] and a softmax [19] output over label classes.
This architecture balances accuracy and computational cost.

B. Training

A reference dataset is constructed manually to demonstrate a data pattern for action
classification. The dataset exemplifies the MCP data structure, annotation fields, and metadata that
are useful to train and evaluate a proof-of-concept classifier. Training on small labeled datasets
requires careful regularization and validation to avoid overfitting [20]. Stratified split [21] is
employed to maintain label distribution between training and validation sets. Early stopping [22] is
employed to halt training and prevent overfitting when validation loss plateaus. Class weighting [23]
is employed to address class imbalance by weighting the loss function. Hyperparameters used in the
prototype are intentionally conservative with a small batch size, a modest learning rate, and a modest
capacity for the classifier head.

C. Evaluation

Threshold analysis for binary risk decisions involves analyzing precision-recall tradeoffs as
thresholds vary.
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Figure 2. Training workflow of Agent Action Classifier.
III. Results

A. Evaluation Score

Hyperparameter tuning discovered that the model scored the best score of 100% accuracy
through the following hyperparameters:
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Table 1. Selected Hyperparameters.

Hyperparameter Value
Hidden Layer Size 512
Number of Epochs 6

Batch Size 8
Learning Rate 0.002

IV. Discussion and Limitations

It reliably recognizes malicious instructions when those instructions contain harmful terms.
These observations motivate the integration of the classifier with richer context signals and a
supervisor who can request clarifications or escalate uncertain cases to human reviewers. The
included evaluation is illustrative due to the small size of the created dataset. The work emphasizes
the evaluation framework and best practices for larger-scale studies. Before trusting any action
classifier in deployment, rigorous evaluation is required. When labels are scarce, cross-validation
should be employed, and variance should be reported.

More evaluation metrics should be utilized. For safety-critical labels such as “harmful,” recall,
and the rate of false negatives should be emphasized. Classifiers should be trained to handle the
distribution shift and adversarial inputs. Careful governance and testing regimes are essential before
any deployment that affects safety, security, or privacy. This work is explicitly a proof-of-concept.
The limitations include data scale, where the provided dataset is small and not representative of the
diversity of possible agent actions. Evaluation lacks robust quantitative metrics without a larger held-
out benchmark and expert annotations. While a compact classifier is attractive for speed and ease of
integration, it cannot substitute for formal expert-human-based verification.

V. Conclusion

The work presents Agent Action data and a compact classifier model for screening proposed
actions from autonomous agents. While the prototype is intentionally small-scale, the paper provides
a precise problem framing, dataset conventions, model design, and a robust evaluation and
deployment roadmap. Future work includes building a larger, annotated benchmark for agent
actions. Future work can explore hybrid approaches that combine symbolic policy checks. To build
trust, the classifier should return a short rationale or highlight tokens that influenced the decision.
Such outputs aid human reviewers and support audits. While a classifier is a suitable component of
supervisory systems, it is not a complete supervisory solution and should include warning users of
a potentially harmful response. Human oversight should be introduced for decisions that lead to
legal or safety implications.
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