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Abstract 

This paper proposes a unified modeling approach based on reinforcement learning to address the 

problem of dynamic user profiling and behavior prediction. Profile updating and next‐step behavior 

prediction  are  formulated  as  a  continuous decision process, where  the  state  is  composed  of  the 

current  profile  snapshot  and  interaction  history,  the  action  corresponds  to  profile updating  and 

recommendation strategy selection, and the reward is driven by user feedback signals. The method 

models  the  evolution  of  user  states  through  a Markov  decision  process  and  achieves  adaptive 

iteration of user profiles by applying policy optimization and value function estimation. To ensure 

balanced modeling, the study integrates a joint objective function of profile updating and behavior 

prediction within the overall optimization, thereby enhancing long‐term stability and personalization. 

In  the  experimental design, different methods are  systematically  compared  in  terms of accuracy, 

ranking metrics, and cumulative  reward, and  the  sensitivity of  the model under hyperparameter 

changes,  environmental  variation,  and  data  disturbance  is  analyzed.  The  results  show  that  the 

proposed method achieves superior performance across multiple evaluation metrics, verifying the 

effectiveness of  the  reinforcement  learning  framework  in  realizing dynamic profiling and precise 

prediction in complex interactive environments. This study not only establishes a unified theoretical 

model  but  also  demonstrates  its  adaptability  and  robustness  in  dynamic  settings,  providing  a 

systematic solution for user profiling and behavior prediction tasks. 

Keywords: dynamic user profiling; behavior prediction; reinforcement learning; sensitivity analysis 

 

1. INTRODUCTION 

In today’s digital society, users engage in frequent and complex activities across networks and 

intelligent systems. Their behavioral patterns are highly dynamic and diverse. Traditional static user 

profiling methods often rely on simple aggregation of historical data. Such approaches struggle to 

adapt  to  the continuous changes  in behavioral  traits and preference demands  [1]. This  limitation 

reduces  the  accuracy  and  timeliness of user profiles  and  affects  applications  in  recommendation 

systems, personalized services, and risk control. With the exponential growth of data and the multi‐

dimensional evolution of user behaviors, it has become urgent to establish user profiles that can be 

dynamically updated and reflect individual differences in real time [2]. 

At  the  same  time,  user  behavior  prediction  has  become  a  core  component  of  information 

technology and social applications. Personalized recommendations in e‐commerce, risk assessment 

in financial systems, and behavioral intervention in healthcare all depend on accurate prediction of 

future user actions  [3]. However, user behavior  is driven by social context,  temporal  factors, and 

individual  psychology.  It  often  shows  complex  nonlinear  relations  and  temporal  dependencies. 

Traditional statistical models or shallow methods fail to capture such dynamics effectively. As a result, 

prediction outcomes are frequently biased. To address this challenge, more adaptive methods with 

decision optimization ability are required to improve flexibility and robustness in prediction [4]. 
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Reinforcement  learning  is  an  intelligent method  centered  on  interaction  and  feedback.  It  is 

naturally  suited  to modeling  and  decision‐making  in  dynamic  environments    [5].  By  learning 

continuously from user feedback, reinforcement learning enables ongoing updates of user profiles 

and  iterative  optimization  of  prediction  strategies.  This  approach  breaks  the  dependence  of 

traditional methods on static data . It also provides new possibilities for personalized modeling of 

user behaviors. The strength of reinforcement learning lies in its ability to balance short‐term patterns 

with  long‐term  preferences  [6].  This  allows  for  the  construction  of  a more  comprehensive  and 

insightful framework for user profiling [7]. 

From  a  broader  social  and  industrial  perspective,  dynamic  user  profiling  and  behavior 

prediction are not only technical issues. They are also crucial to the sustainable development of the 

digital economy [8]. In business, they directly affect user experience and market competitiveness. In 

public services, they enhance the efficiency of resource allocation and improve service precision. In 

security management,  they  support  risk  identification  and  anomaly  detection. An  adaptive  and 

evolving profiling system can better address  the complexity and diversity of social demands and 

drive intelligent service systems to a higher level. 

In  conclusion,  research  on  dynamic  user  profiling  and  behavior  prediction  based  on 

reinforcement learning carries significant theoretical and practical value    [9]. On the theoretical side, 

it promotes the shift from static to dynamic and from shallow to deep user modeling, offering a new 

perspective at the intersection of artificial intelligence and human behavior. On the practical side, it 

enhances the accuracy and sustainability of personalized services, helping digital societies to balance 

efficiency and fairness. Therefore, exploring reinforcement learning for dynamic optimization of user 

profiles and behavior prediction is both a frontier of academic research and an essential support for 

intelligent transformation in society. 

2. PROPOSED APPROACH 

In  this study,  the dynamic updating of user profiles and  the prediction of next behavior are 

uniformly modeled  as  a  continuous  decision‐making  process, which  can  be  viewed  as  a  game 

framework  based  on  a Markov  decision  process  (MDP).  Specifically,  the  state  ts    represents  a 

snapshot of the user profile at time t and the most recent interaction traces. Action  ta   indicates how 

to update  the profile and provide  recommendations or  intervention  strategies. The  reward  tr    is 
determined by the feedback generated by the user after this round of interaction. The entire system 

forms  state  transitions  and  policy  iterations  through  continuous  interaction  to  achieve  dynamic 

optimization of user profiles and behavior prediction. The model architecture is shown in Figure 1. 

 

Figure 1. Overall model architecture. 

Mathematically, the state transition relationship can be expressed as: 

),,(1 tttt uasfs   
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Where  tu   represents the userʹs actual behavior signal at time t, and function  )(f   describes 

the evolution of the state with actions and external feedback. 

To optimize the updating of user profiles and behavior prediction, it is necessary to establish a 

value function based on reinforcement learning    [10‐13]. The state value function is defined as: 
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Where      represents  the  strategy  and  )1,0(    is  the  discount  factor, which  is  used  to 

balance immediate feedback and long‐term rewards. We further introduce the action value function: 

],|)([),( 1 tttttt assVrEasQ  

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This  function  describes  the  expected  benefit  of  taking  an  action  in  a  specific  state.  By 

continuously  approximating  the  value  function,  the  system  can  select  the  optimal  action while 

meeting the dual goals of profile update and behavior prediction. 

At the policy optimization level, this study uses a gradient‐based reinforcement learning method 

to directly optimize the parameterized policy 
)|( sa . The objective function is to maximize the 

expected cumulative return: 
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Through the policy gradient theorem, the optimization direction can be obtained: 

)],()|(log[)( tttt asQsaEJ 


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During the actual update process, the system will use historical user feedback to continuously 

calibrate strategy parameters, making recommendations and predictions more in line with individual 

needs. 

To better balance  the  two  tasks of user profile updating and behavior prediction,  this  study 

introduces  a  joint objective  function  that weightedly  integrates  state  representation  learning  and 

behavior prediction losses proposed by Xu et al. [14] . Let the loss of the user profile update part be 

profileL
  and the loss of the behavior prediction part be  predictL

, then the overall optimization goal is: 

predictprofile LLL )1(    

]1,0[   is used to adjust the importance of the two parts. This mechanism ensures that the 

portrait  can  take  into  account both historical  information  and  the  accuracy of  future predictions 

during dynamic updates, thereby achieving adaptive evolution and efficient decision‐making within 

the reinforcement learning framework. 

3. PERFORMANCE EVALUATION 

A. Dataset 

The dataset used  in  this  study  comes  from  the Kaggle platform.  It  contains  records of user 

behavior and profile information in online environments. The data include basic attributes, historical 

interaction  traces, and  subsequent  feedback outcomes. The dataset  is highly  structured.  It  covers 

static attributes such as demographic features and basic preferences, as well as dynamic interaction 

data such as clicks, browsing, purchases, and evaluations. These multi‐dimensional inputs provide a 

solid basis for dynamic user profiling and behavior prediction. The main advantage of this dataset 

lies in its large scale and long time span. It captures user behavior patterns and trends over time in a 

comprehensive way. Since it contains continuous sequences of user operations, it is well‐suited for 

modeling Markov  decision  processes.  This  allows  the  identification  of  transition  patterns  under 

different states. The dynamic nature of the data ensures sufficient representativeness and robustness 

in tasks related to profile updating and behavior prediction. 
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In  addition,  the  dataset  has  been  processed  to  ensure  strict  privacy  compliance.  Only 

anonymized behaviors and attribute  information are preserved. No personally  identifiable data  is 

included. This design ensures reproducibility of research while avoiding ethical and compliance risks. 

It provides a secure environment for exploring and validating the proposed methods. 

A. Experimental Results 

This paper first conducts a comparative experiment, and the experimental results are shown in 

Table 1. 

Table 1. Comparative experimental results. 

Method  Acc  NDCG@k 
Cumulative 

Reward 

IRADA [15]  0.732  0.641  125.6 

SASRec [16]  0.764  0.673  139.8 

GRU4Rec [17]  0.781  0.702  148.3 

XLNet4Rec [18]  0.812  0.745  163.7 

Ours  0.857  0.812  191.4 

From Table 1, it can be seen that different methods show clear differences in the task of dynamic 

user profiling and behavior prediction. Traditional methods such as IRADA and SASRec demonstrate 

some ability  in accuracy and ranking metrics, but their overall performance remains  limited. This 

indicates that they still face challenges in capturing user behavior patterns. These methods rely more 

on  static  features  or  shallow  interaction  information, which makes  it  difficult  to  achieve  robust 

modeling  in  long‐term  interactions and dynamic environments. As a result, they also show  lower 

levels of cumulative reward. 

With the increase in methodological complexity, GRU4Rec and XLNet4Rec outperform the first 

two methods on all three metrics. XLNet4Rec is especially strong in NDCG@k and cumulative reward. 

This shows that introducing stronger sequence modeling and strategy optimization mechanisms can 

effectively enhance the ability to update user profiles dynamically. It also provides more accurate 

support for behavior prediction. The performance gains further confirm the importance of dynamic 

modeling in multi‐round interactions. They suggest that more complex behavioral features are better 

utilized within these models. 

In comparison, the proposed method achieves the best results across all three metrics, with a 

particularly  significant  improvement  in NDCG@k. This  indicates  that  the  reinforcement  learning 

framework can better integrate user profiles with interaction history. It balances short‐term feedback 

with  long‐term  returns.  This  leads  to more  accurate matching  in  recommendation  ranking  and 

behavior  prediction.  The  increase  in  cumulative  reward  also  reflects  stability  and  sustainable 

optimization in continuous interactions. This demonstrates the effectiveness of modeling user profile 

updating and behavior prediction as a unified decision‐making process. 

Overall, the experimental results highlight not only the numerical advantages of the proposed 

method  but  also  its  adaptability  and  robustness  in  dynamic  environments.  Unlike  traditional 

methods  that  rely  on  static modeling,  this  study  employs  reinforcement  learning‐driven  policy 

iteration to continuously refine user profiles and optimize predictions based on real‐time feedback. 

This feature is of great significance for personalized services and precise interventions. It suggests 

that the method can better meet user needs and increase overall system value in practical applications. 

This paper further presents a data noise  interference sensitivity experiment, the experimental 

results of which are shown in Figure 2. 
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Figure 2. Data noise interference sensitivity experiment. 

From Figure 2,  it can be observed that as the noise ratio  increases, the accuracy of the model 

shows a gradual decline.  In  low‐noise environments,  the model can still maintain high precision. 

However, when the noise reaches 20% or 30%, accuracy drops significantly. This indicates that data 

quality plays  a  critical  role  in  the  robustness of dynamic user profiling and behavior prediction. 

Excessive noise weakens the alignment between state representation and decision strategy. 

The  variation  of  NDCG@k  also  reveals  the  destructive  effect  of  noise  interference  on 

recommendation  ranking.  Under  noise‐free  or  light‐noise  conditions,  the model  can  effectively 

capture user preferences and maintain a reasonable ranking structure. Yet as the noise ratio increases, 

the value of NDCG@k continues to decline. This reflects a growing gap between recommendation 

results and actual user feedback. It shows that ranking accuracy is severely affected under high‐noise 

environments. It also suggests that suppressing invalid or incorrect signals is particularly important 

during profile updating. 

The  downward  trend  of  cumulative  reward  confirms  the  model’s  limited  adaptability  in 

dynamic environments. Higher noise ratios reduce effective long‐term returns, making reinforcement 

learning  strategies  struggle  to maintain  stable  reward  accumulation. Weakened  reward  signals 

impair  short‐term  prediction  and  long‐term  optimization,  reducing  the  model’s  overall 

performance.Noise  interference  systematically  impacts  dynamic  user  profiling  and  behavior 

prediction.  It declines accuracy, ranking metrics, and cumulative reward. Data preprocessing and 

noise suppression are crucial. Building robust representations and anti‐interference strategies within 

reinforcement  learning  frameworks  is  essential. Consistency  under  uncertainty  and  interference 

improves system reliability and practical value. 

This paper also presents an experiment on batch size variation, the experimental results of which 

are shown in Figure 3. 

 

Figure 3. Batch Size Variation Experiment. 
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From Figure 3,  it  can be  seen  that  the  effect of batch  size on model accuracy  shows a  clear 

fluctuation trend. When the batch size is small, such as 16 or 32, the model can capture fine‐grained 

information  during  gradient  updates.  As  a  result,  accuracy  remains  high  and  reaches  the  best 

performance at 64. This indicates that a moderate batch size allows the model to strike a good balance 

between stability and generalization ability. 

However, when the batch size increases further to 128 or 256, the accuracy begins to decline. The 

main  reason  is  that an excessively  large batch size  leads  to overly  smooth gradient estimation.  It 

reduces  sensitivity  to  noise  and  details, which  limits  the  exploratory  ability  of  the  optimization 

process. For dynamic user profiling and behavior prediction, such overly smooth training makes it 

difficult for the model to capture small variations in interaction history. 

It is noteworthy that the decrease in accuracy under different batch sizes is not linear. Instead, it 

shows a pattern of rising first and then falling. This trend demonstrates that batch size selection is not 

simply a matter of choosing larger values. It requires adjustment according to data characteristics and 

model complexity. Especially within reinforcement learning frameworks, an excessively large batch 

size may  obscure  short‐term  feedback  signals  and weaken  the  effectiveness  of  long‐term  policy 

optimization. 

In summary, the results show that batch size is an important factor affecting the performance of 

user profiling and behavior prediction. A moderate batch size provides a better balance among model 

stability, generalization, and  training efficiency. Very  large or very small batch sizes both  lead  to 

performance degradation. Therefore, in practical applications, sensitivity experiments are needed to 

identify the optimal batch size configuration. This ensures robust performance of profile updating 

and prediction tasks in dynamic environments. 

This  paper  further  presents  experiments  on  sensitivity  to  reward  in  sparse  and  dense 

environments, and the experimental results are shown in Figure 4. 

 

Figure 4. Experiment on sensitivity to sparse and dense reward environments. 

From Figure 4, it can be seen that as the reward environment shifts from dense to sparse, the 

cumulative reward of the model shows a clear downward trend. In the dense environment, the model 

can fully exploit rich feedback signals. It continuously optimizes strategies and accumulates higher 

rewards, showing better learning efficiency and stability. However, when the reward signals become 

sparse, the cumulative reward decreases significantly. This indicates that a lack of sufficient feedback 

weakens the effectiveness of policy iteration. 

In medium‐dense and medium environments,  the decline  in cumulative  reward  is  relatively 

moderate. This suggests that the model still retains a certain level of robustness under moderately 

dense  reward  conditions. Reinforcement  learning  can  rely on  limited  feedback  signals  to achieve 

relatively  stable  optimization. Yet  the  efficiency  is  lower  than  in  fully dense  environments. This 

phenomenon  reflects  the different  levels  of  adaptability  of dynamic user  profiling  and  behavior 

prediction under varying reward conditions. 
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When entering sparse and highly sparse environments, the cumulative reward drops sharply. 

The model struggles to obtain effective guidance from scarce signals. This leads to slower or even 

stalled convergence of strategies. This finding shows  that  in scenarios with  limited or sparse user 

feedback, reinforcement learning alone may not be sufficient to support dynamic profile updating 

and behavior prediction. Auxiliary mechanisms are needed to compensate for the lack of signals. 

Overall,  the results confirm  the sensitivity of model performance  to reward sparsity.  In real‐

world applications, user feedback often shows imbalance and sparsity. Thus, maintaining learning 

efficiency  under  sparse  rewards  becomes  a  key  challenge  for  improving  the  stability  of  profile 

updating  and prediction. This  also points  to  future  research directions. More  reasonable  reward 

shaping or  the  integration of external prior knowledge can enhance  the adaptability of models  in 

sparse environments. 

4. CONCLUSIONS 

This  study  addresses  the  problem  of  dynamic  user  profiling  and  behavior  prediction  by 

proposing a unified framework based on reinforcement learning. By abstracting profile updating and 

behavior prediction as a continuous decision process, the model optimizes through the interaction of 

states,  actions,  and  rewards.  This  overcomes  the  limitations  of  traditional  static  methods. 

Experimental results show that the proposed method performs well in accuracy, ranking metrics, and 

cumulative reward. This verifies the effectiveness of reinforcement learning in handling complex user 

behavior patterns and dynamic environments. The framework not only improves prediction accuracy 

and system robustness but also provides a new perspective for the dynamic evolution of user profiles. 

In specific tasks, the proposed method can fully integrate user profile snapshots with interaction 

history. It balances short‐term feedback with long‐term returns, making predictions closer to actual 

behaviors. This capability is important for recommendation systems, personalized interventions, and 

risk  identification. With  the accumulation of  interaction data,  the model  continuously  refines  the 

profile  structure.  It  provides  predictions  and  recommendations  that  better meet  user  needs  and 

significantly enhance user experience and  system value. The  improvement of cumulative  reward 

further confirms the sustainable optimization ability of the model in long‐term interactions, offering 

reliable support for strategy decisions in complex applications. 

From an application perspective, the contribution of this study lies in presenting a highly general 

modeling  approach. The method  can  adapt  to diverse  environments  and data  conditions.  It has 

potential applications not only in information services and e‐commerce but also in finance, healthcare, 

and public services. By enabling efficient and  robust profile updating and behavior prediction  in 

dynamic  environments,  this  study  provides  strong  technical  support  for  related  systems  and 

promotes the further development of intelligent services. Overall, this study expands the modeling 

paradigm of user profiling  and behavior prediction  at  the  theoretical  level  and demonstrates  its 

feasibility and advantages in practice. With reinforcement learning, user profiles are no longer static 

results but dynamic  systems  that  evolve with  time and  feedback. This  feature allows  systems  to 

maintain high performance under uncertainty  and  environmental  changes,  creating positive  and 

lasting impact in real‐world applications. 
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