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Abstract

With the rapid advancement of artificial intelligence (AI) technologies, large language models (LLMs)
exhibit remarkable capabilities in problem-solving. While LLMs have revolutionized natural language
processing (NLP), their inherent limitations in structured reasoning impede performance on complex
AI tasks that demand multi-step logic, contextual comprehension, and knowledge synthesis. This
paper provides a comprehensive overview of approaches to bridge this gap, categorizing reasoning
techniques into basic and advanced paradigms. We analyze cutting-edge strategies—including prompt
engineering, retrieval-augmented reasoning, and neural-symbolic architectures—which offer diverse
perspectives on reasoning across the phases of query formulation, information retrieval (IR), and
answer generation. By establishing a taxonomy of reasoning-enhanced IR models and exploring their
reasoning applications, we illustrate measurable improvements in the accuracy and interpretability of
contemporary LLMs, particularly IR-related models. Nevertheless, persistent challenges in multi-hop
reasoning, output consistency, and domain adaptation call for future efforts focused on modular
systems, dynamic knowledge integration, and reasoning-aware training frameworks. Our findings
and syntheses emphasize that the next evolution of LLMs—and certain IR models alike—resides
not merely in retrieving information, but in the true ability to understand, retain, and reason with
information, mirroring human cognition.

Keywords: large language models; information retrieval; reasoning; prompt engineering; task
decomposition; retrieval-augmented reasoning

1. Introduction
The advent of large language models (LLMs) [1] has redefined the boundaries of machine in-

telligence, enabling unprecedented fluency in text generation [2] and semantic comprehension [3].
Yet beneath these remarkable advancements lies a fundamental limitation: current LLMs excel at
language processing tasks [4] but struggle with systematic reasoning—the ability to methodically
derive conclusions from premises, reconcile conflicting evidence, or adapt logical frameworks to novel
contexts [5]. This constraint becomes particularly pronounced in information retrieval (IR), where
users increasingly demand systems that do not merely retrieve documents, but also understand and
reason about their content. Traditional IR systems [6], which rely on statistical word matching or even
contemporary dense retrieval techniques [7], often fail to capture the nuanced intent behind queries
(e.g., distinguishing between "Apple (the fruit)" and "Apple (the company)") or synthesize insights
from disparate sources to address complex questions such as "How have Tesla’s inventions shaped
modern power grids?" This paper makes three core contributions:

Taxonomy of Reasoning for AI: We classify reasoning techniques based on their cognitive
underpinnings (Section 2), differentiating between basic and advanced paradigms, and specifically
examine their applicability to IR tasks (Section 5).

Integration Framework: We propose a holistic integration architecture (Sections 3–4) that embeds
reasoning into AI models via prompt engineering, retrieval-augmented generation (RAG), and hybrid
neural-symbolic systems—with empirical validation drawn from open-domain question answering
(QA) and scientific search tasks.
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Challenge-Driven Roadmap: We outline a challenge-oriented roadmap (Section 6), identifying
critical gaps in the reliability of multi-step reasoning and proposing solutions that leverage modular
design and dynamic knowledge graphs. Our work highlights that reasoning is not merely an auxiliary
component, but a structural prerequisite for next-generation AI systems: systems that do not just
deliver results, but also justify them through transparent, human-aligned logic.

Figure 1. An Overview of Reasoning Structure.

2. Taxonomy of Reasoning
Reasoning methods can be systematically categorized based on their logical structure, cognitive

processes, and applicability to problem-solving. This taxonomy divides reasoning into Basic and
Advanced paradigms, reflecting their complexity, reliance on prior knowledge, and ability to handle
uncertainty or multi-modal contexts.

2.1. Basic Reasoning
2.1.1. Deductive Reasoning

Deductive reasoning [8] involves drawing specific conclusions from general principles or premises.
If the premises are true and the reasoning is valid, the conclusion must also be true. This form of
reasoning moves from the general to the specific. It is widely used in mathematics, logic, and formal
systems where conclusions need to be definitively proven based on established axioms or laws.

From A ⇒ B, A ⊢ B, we can get that if A is true and it implies B, then B must also be true.

2.1.2. Inductive Reasoning

Inductive reasoning [9] involves drawing general conclusions from specific observations or
instances. The conclusions reached are probable but not certain, as they extend beyond the available
evidence. It is commonly employed in scientific research, data analysis, and everyday decision-making
where patterns observed in samples are generalized to larger populations

From {xi ∈ D | P(xi) = True, i = 1, . . . , n} ⇒ ∀x ∈ D, P(x) = True, we can get that if all sampled
elements of D satisfy P(x), then all elements in D are likely to satisfy P(x).

2.1.3. Abductive Reasoning

Abductive reasoning [10] entails forming the most plausible explanation for observations, often
with incomplete information. It involves inferring the best possible conclusion to explain a set of data.
It is often utilized in diagnostic fields such as medicine and troubleshooting, where practitioners must
infer the most likely cause from limited evidence.

From A ⇒ B, B ⊢ arg maxA P(A | B), we can get that if B is observed, the most probable
explanation is the A that maximizes P(A | B).
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Figure 2. An Overview of Reasoning Categories.

2.1.4. Symbolic Reasoning

Symbolic Reasoning [11] refers to a form of artificial intelligence (AI) that operates on structured
representations of knowledge using formal logic, rules, and symbolic manipulation. It relies on explicit
rules and logical inference to derive conclusions, making it inherently interpretable and precise.

From ∀x ∈ X, P(x) ⇒ Q(x), we can get that for all x in the set X, if P(x) holds, then Q(x) must
also hold.

2.1.5. Numerical and Algoritnmic Reasoning

Numerical and Algorithmic Reasoning [12] refers to the ability to solve quantitative and structured
problems through systematic computation, mathematical operations, and step-by-step algorithmic
procedures. This form of reasoning is fundamental in tasks requiring precise calculations, optimization,
or the application of well-defined computational methods.

From y = f (x, ϕ), f : Rn → Rm, we can get that the output y is computed from input x using a
function f with parameters ϕ.

2.2. Advanced Reasoning

LLMs Are Good At:

2.2.1. Analogical Reasoning

Analogical reasoning [13] involves comparing two similar cases and inferring that what is true
for one is also true for the other. It relies on identifying shared properties to draw conclusions about
unknown aspects. It is common in legal reasoning, problem solving, and learning, where past cases or
experiences inform understanding of new situations.
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From Rel(A, B) ≈ Rel(C, D) ⇒ A : B :: C : D, we can get that the relationship between A and B
is analogous to that between C and D.

2.2.2. Casual Reasoning

Causal reasoning [14] involves identifying relationships between causes and effects, understand-
ing how one event leads to another. It refers to the cognitive process of identifying and understanding
the cause-and-effect relationships between events, variables, or actions. Causal reasoning seeks to
determine whether one event directly influences another, often considering interventions.

From P(Y | do(X)) ̸= P(Y | X), we can get that intervention on X causes a different outcome on
Y compared to just observing X, indicating a causal effect.

2.2.3. Common Sense Reasoning

Common sense reasoning [15] refers to the ability to make sound judgments based on simple
perceptions of the situation or the facts. It involves practical decision-making and the ability to infer
everyday situations. It is integral to artificial intelligence and robotics, with the aim of enabling
machines to process information in a human-like manner.

From KUC5-Q, we can get that models must apply everyday knowledge to answer commonsense
questions.

2.2.4. Heuristic Reasoning

Heuristic reasoning [16] refers to problem-solving strategies that employ practical, experience-
based shortcuts or "rules of thumb" to efficiently arrive at satisfactory solutions, often at the cost of
guaranteed optimality or precision. Common heuristics include availability , representativeness , and
anchoring.

From P(Output | Input) = TP(Token | Context), we can get that the next token is predicted
based on the given context using heuristic probability.

2.2.5. Social Reasoning

Social reasoning [17] encompasses the cognitive processes required to understand, predict, and
navigate interactions within social contexts, including inferring others’ mental states, recognizing
norms, and interpreting intentions or emotions. It integrates implicit knowledge of cultural rules,
empathy, and perspective-taking to guide behavior in collaborative or competitive settings.

From BeliefA(DesireA ⇒ ActionA), we can get that an agent’s actions are inferred from their
beliefs and desires.

2.2.6. Spatio-Temporal Reasoning

Spatio-temporal reasoning [18] refers to the cognitive and computational ability to represent,
interpret, and draw inferences about entities and events in relation to their spatial configurations and
temporal dynamics.

From S(x, t) ⇒ S(x, t + ∆t), x ∈ Rn, we can get that the state of x at time t determines its state at
a future time t + ∆t.

LLMs Are Not Good At:

2.2.7. Complex Abductive Reasoning

Complex abductive reasoning involves generating and selecting the most plausible explanatory
hypotheses from incomplete or ambiguous observations, often requiring integration of background
knowledge, contextual constraints, and multi-step inference [19].

From {Ai ⇒ Bj : i = n, A∗ = arg max AiP(Ai | B)}, we can get that the best explanation A∗ for B
is the one with the highest posterior probability.
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2.2.8. Deep Analogical Transfer

Deep analogical reasoning refers to identifying and transferring abstract relational structures
(beyond surface similarities) between dissimilar domains.

From ∃ϕ : D1 → D2, RelD1(x, y) ≈ RelD2(ϕ(x), ϕ(y)), we can get that a relationship from domain
D1 can be mapped to a similar one in domain D2.

2.2.9. Counterfactual Reasoning

Counterfactual reasoning [20] (Counterfact Casual Reasoning) evaluates hypothetical scenarios by
altering causal antecedents. It relies on: Structural causal models (SCMs) [21] to simulate interventions,
and distinguishing actual vs. potential outcomes .

From P(YX=1 | X = 0, Y = 0), we can get the probability of Y occurring under intervention X = 1,
even though in reality X = 0 and Y = 0.

2.2.10. Probablistic Reasoning

Probabilistic reasoning [22] quantifies uncertainty by assigning degrees of belief to propositions
using probability theory .

From P(A) = ∑ P(A | Bi)P(Bi), we can get that the total probability of A is computed by
summing over all possible Bi using the law of total probability.

2.2.11. Multi-Modal Reasoning

Multimodal reasoning [18] integrates information across distinct sensory modalities (text, image,
audio, etc.) to solve tasks requiring cross-modal alignment.

From R = f (xtext, ximage, xaudio), we can get that reasoning R is derived from the integration of
textual, visual, and auditory inputs.

3. Problem-Solving Strategies
Recent advances in LLMs have led to sophisticated problem-solving strategies that enhance

reasoning, planning, and task decomposition. These approaches can be broadly categorized into
prompt engineering, task decomposition and prompt engineerings. Below, we discuss these two
methods and their supporting research.

3.1. Prompt Engineering
3.1.1. Foundational Techniques

(a) Static Prompting:

In-Context Learning (ICL) [23]is a paradigm in which large language models (LLMs) perform
tasks by leveraging demonstrations (input-output examples) provided within the prompt, without any
parameter updates. ICL enables LLMs to generalize from contextual examples, mimicking human-like
analogical reasoning.

Chain-of-Thought Prompting (CoT): Chain-of-Thought prompting [24] is a prompting method
that encourages the model to generate intermediate reasoning steps before reaching a final answer. By
showing examples with step-by-step reasoning, the model learns to decompose complex problems
into manageable sub-tasks.

(b) Dynamic Prompting:
Auto-Prompt: AutoPrompt [25] is a method for automatically generating discrete textual prompts

that elicit specific behavior from language models. Instead of relying on manually designed prompts,
AutoPrompt optimizes tokens using gradient-based search to enhance performance on downstream
tasks.
Demonstration Retrieval: Demonstration retrieval [26] refers to the dynamic selection of relevant
input-output examples (demonstrations) from an external database based on the semantic similarity to
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the current input. These retrieved examples are then used to construct the prompt in few-shot settings,
improving contextual relevance and task performance.

3.1.2. Structural Optimization

(a) Complexity-Based Prompt:

Complexity-based prompting [27] is a strategy that adapts the structure or depth of prompts based on
the complexity of the input problem. Simpler tasks may use direct or single-step prompts, while more
complex tasks may trigger multi-step reasoning or Chain-of-Thought style prompting automatically.

(b) Multi-Step Prompt:

Multi-step prompting [28] is prompting strategies that involve multiple stages of interaction or reason-
ing, where the model is guided to break down complex tasks into smaller sub-tasks and solve them
sequentially. This helps reduce reasoning leaps and improves answer consistency.

3.1.3. Adaptive Methods

(a) Gradient-Based

Prompt Tuning: Prompt tuning [29] refers to optimizing continuous embeddings for the input prompts,
allowing a model to better adapt to a specific task without altering the model’s core parameters.
Instead of modifying the model’s weights, prompt tuning focuses on adjusting the learned prompt
representations to guide the model effectively.

Prefix Tuning: Prefix tuning [30] involves adding a learnable prefix (trainable vector) to the input
text, before the actual model input. This prefix guides the model in generating task-specific outputs,
allowing it to adapt to various tasks without fine-tuning the model’s internal weights.

(b) Meta-Learning
Meta Prompting: MetaPrompting [31] refers to the process of training a meta-model that dynamically
generates task-specific prompts based on the input data. Instead of relying on fixed prompts, a meta-
prompting system adapts and generates optimized prompts for different tasks, enhancing the model’s
performance across diverse domains.

(c) Hybrid
Retrieval-Augmented Tuning: Retrieval-augmented tuning [32] is a method that combines external
knowledge retrieval with prompt optimization. The idea is to dynamically retrieve relevant knowledge
from external sources, such as a database or the web, and use it to augment the prompt for the model,
enabling the model to generate more accurate and contextually relevant responses for a given task.

3.2. Task Decomposition

Breaking complex problems into smaller, manageable sub-tasks is crucial for improving LLM
performance. According to this purpose, there are two kinds of task decomposition methods: direct
decomposition and recursive decomposition. Apart from these two methods, we can also use Tool-
Based Decomposition [33] (Incorporate external resources like databases, APIs, or knowledge graphs
into the decomposition process), Plan-based Decomposition [34] ( Ensure that sub-tasks are aligned
according to a high-level plan or goal) and other methods.
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Figure 3. The Flow Chart to Determine the Methods of Decomposition.

3.2.1. Direct Decomposition

Direct decomposition is a reasoning strategy that breaks down complex tasks into smaller, more
manageable sub-problems, solving them sequentially or in parallel before combining their solutions.
This approach is inspired by human problem-solving, where dividing a challenge into simpler steps
reduces cognitive load and improves accuracy.

(a) Least-to-Most Prompting:Least-to-Most Prompting (LtM) [35] is a structured problem-solving
strategy for LLMs that decomposes complex tasks into simpler sub-problems, solves them sequentially,
and combines the results to derive the final answer. Inspired by educational psychology, it mirrors
how humans break down challenges into manageable steps.

(b) Decomposed Prompting:Decomposed Prompting [36] is a framework for solving complex
tasks by breaking them into smaller, independent sub-tasks, each handled by specialized modules
(LLMs or external tools).

3.2.2. Recursive Decomposition

Recursive Decomposition is a problem-solving strategy that breaks down a complex task into
smaller, self-similar sub-problems through recursive splitting, continuing until reaching trivial base
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cases that can be solved directly. It mirrors divide-and-conquer algorithms [37] in computer science,
where each sub-problem follows the same decomposition logic as the parent problem.

(a)Self-Ask:Self-Ask [38] is a prompting strategy where the language model (LM) explicitly
generates and answers its own sub-questions to solve complex, compositional problems. It narrows
the compositionality gap—the performance drop when LMs fail to systematically combine known
components to solve novel tasks.

(b)Plan-and-Solve Prompting:Plan-and-Solve Prompting (PS) [39] enhances zero-shot Chain-of-
Thought (CoT) reasoning by explicitly splitting the reasoning process into two phases:

Planning: The model generates a high-level solution strategy.

Problem: [Problem Statement] Plan: [Step 1], [Step 2], ...

Solving: The model executes the plan step-by-step.

Execution:

(1) Price per apple = $6 / 3 = $2.
(2) Cost for 5 apples = $2 × 5 = $10.

Final Answer: $10.

4. Reasoning Enhancement Approaches
4.1. Prompt Based Methods

There is no change of the structure of LLMs. Via enhancing prompts, they can stimulate or lead
LLM to generate better reasoning results. In the Figure 4, we want to make a comparison between five
prompting methods, including direct prompting, Chain-of-Thought, Self-Consistency, Self-Ask, and
Program-Aided Language Models (PAL).

4.1.1. Chain of Thought (CoT)

The introduction of CoT is in 3.1.1. In this section, we will show the comparison with other
methods.

4.1.2. Self-Consistency

Self-Consistency [40] is a technique designed to enhance the reliability of reasoning in large
language models (LLMs) by generating multiple independent reasoning paths for a given problem
and aggregating their results to select the most consistent answer. This approach mitigates errors from
individual reasoning paths by cross-validating logic and facts across multiple solutions, improving ro-
bustness in complex tasks like mathematical problem-solving, multi-hop QA [41], and fact verification.
For instance, if three out of five generated paths converge on the same answer, that answer is chosen
as the final output, reducing reliance on potentially flawed single-path reasoning.

4.1.3. Tree of Thought(ToT)

The Tree of Thought (ToT) [42] process is a structured approach to reasoning that involves
systematically decomposing and exploring multiple paths of thought, with the goal of reaching a
solution in a more organized and efficient way. There are four steps of ToT: thought decomposition,
thought generator, state evaluator and search algorithm.

4.1.4. Program-Aided Language Models (PAL)

Program-Aided Language Models (PAL) [43]is a technique that combines natural language
processing (NLP) with program synthesis. Its core idea is to leverage a language model (LM) to
generate program code, which is then executed by an external interpreter to solve complex problems
(such as mathematical calculations, logical reasoning, etc.). Unlike traditional LMs that directly
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output answers, PAL breaks down the problem into two steps—"generating code" and "executing
code"—significantly improving accuracy, interpretability, and generalization capability.

Figure 4. The Comparison Between Five Methods
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4.2. Retrieval-Augmented Reasoning

Retrieval-Augmented Reasoning (RAR) [44] integrates dynamic knowledge retrieval with structured
reasoning to enhance the problem-solving capabilities of Large Language Models (LLMs). Unlike traditional
retrieval systems that focus solely on document matching, RAR treats retrieval as an active reasoning
component, enabling models to access, evaluate, and synthesize external knowledge in real time.

4.2.1. Theoretic Foundations

(a) Dynamic Knowledge Expansion:

Addresses the static knowledge limitation of LLMs by retrieving up-to-date or domain-specific infor-
mation.

(b) Reasoning-Retrieval Synergy:

Retrieval provides evidence for intermediate reasoning steps.
Step 1: Decompose a query into sub-questions (3.1 Task Decomposition).
Step 2: Retrieve documents for each sub-question.
Step 3: Reason over retrieved content to synthesize answers.

4.2.2. Key Techniques

(a) Hybrid Architectures:

There are several typical types of hybrid architectures: dense retrieval [7], sparse retrieval [45],
sparse+dense retrieval [45], neuro-symbolic [46], multi-stage retrieval, knolwdge-enhanced retrieval
and reranking-based retrieval. Table 1 is our representation of approaches with brief descriptions and
limitations.

(b) Query Optimization:

In Retrieval-Augmented Reasoning (RAR), query optimization [47] plays a key role in enhancing
retrieval effectiveness and reasoning efficiency. By optimizing the query, we can minimize irrelevant
information, increase the relevance of retrieval results, and effectively support subsequent reasoning
tasks. Below are some query optimization methods explained in detail, especially how they can be
applied within the Retrieval-Augmented Reasoning framework:

Hypothetical Document Embeddings (HyDE):HyDE [48] generates ideal document representa-
tions for each query through deep reasoning. These embeddings are then used as input for the retrieval
model to optimize document recall. In the Retrieval-Augmented Reasoning (RAR) framework, HyDE
can significantly improve the semantic understanding of queries. The retrieval system is not just
focused on matching keywords but also understands the underlying intent of the query.

Iterative Retrieval:This method refines queries across multiple stages, constantly optimizing the
query based on intermediate results [49]. Each iteration fine-tunes the query based on new retrieved
results, thus improving retrieval accuracy. By refining queries in each round, iterative retrieval makes
the retrieval and reasoning process more efficient. As each round of feedback is incorporated, the
semantic understanding of the query deepens, and the results gradually align with the target document.

Query Expansion via Large Language Models (LLMs): Query expansion [50] is achieved by
Large Language Models (LLMs) generating relevant synonyms, extended terms, or contextually related
keywords automatically, making the query more diverse and accurate. LLMs not only expand queries
based on syntax but also generate extensions based on the query context. The use of LLMs for query
expansion in the Retrieval-Augmented Reasoning (RAR) framework enhances the semantic matching
ability of the retrieval system. LLMs understand the deeper semantic layers of the query and expand it
with more relevant concepts and terms. This method improves the overall quality of retrieval results.
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Table 1. Hybrid Architectures in Retrieval-Augmented Reasoning.

Approach Description Strengths Example Models
Dense Retrieval Uses neural encoders

to transform text to
vectors and perform

semantic search.

Strong semantic
understanding [51],

supports fuzzy
matching [52]

RAG [53],
REPLUG [54],

Contriever [55]

Sparse Retrieval Based on term
matching using
inverted index

structures.

High precision and
interpretability,

lightweightl

Traditional OpenQA
systems [56]

Sparse + Dense
Retrieval

Combines sparse
methods with dense
retrieval, often using
rerankers for better

accuracy

Balances semantic and
lexical matching, good
for QA and domains

like law and medicine

ColBERT-X [57],
HyDE [48],

SPLADE [58],
FiD-KD [59]

Multi-stage Retrieval Multi-phase approach
with fast initial

retrieval and refined
reranking.

Improves both
efficiency and accuracy

Dense Phrases [60],
RocketQA [61]

Neuro-Symbolic
Retrieval

Combines neural
retrieval with symbolic

rules for filtering.

More controllable and
accurate, suitable for

highly regulated
domains

Self-RAG [62],
LEGAL-BERT [63],

SciFact [64]

Knowledge-
Enhanced

Retrieval [65]

Incorporates external
knowledge bases or
structured data to
support retrieval

Improves factual
consistency and entity

linking

KELM [66],
ERNIE-RAG

Reranking-based
Retrieval [67]

Applies powerful
rerankers [68] to

reorder candidates
after initial retrieval.

Boosts retrieval quality
significantly

MonoT5 [69],
RankGPT,

BGE-Reranker

4.3. Architecture Modification
4.3.1. Neural-Symbolic Hybrid System

Integrates neural networks for pattern recognition with symbolic systems to enforce rigorous,
interpretable reasoning. By dynamically switching between subsymbolic and symbolic processing,
these architectures combine the flexibility of deep learning with the precision of formal logic.

4.3.2. Memory-Augmented Architectures

Augments LLMs with external, updatable memory modules to mitigate catastrophic forgetting
and support long-term knowledge retention [70]. Unlike static LLM parameters, these memories
enable dynamic read/write operations during inference.
(a) Hierarchical Memory: Short-term [71]: This memory stores recent context, such as the last N turns
in a conversation or recent interactions. It allows the model to keep track of ongoing dialogues or
tasks and enables context-sensitive responses. Long-term [71]: Long-term memory stores broader,
domain-specific knowledge that can be retrieved as needed, supporting the model’s ability to recall
past information, facts, or experiences that are not immediately present in the conversation but are
essential for reasoning.
(b) Sparse Access: Sparse memory [72] addressing ensures that the most relevant pieces of memory
are accessed in a computationally efficient manner. This approach is particularly useful when the
model has access to large memory systems and needs to query a subset of this memory quickly.

4.3.3. Graph-Based Reasoning Modules

Explicitly models relationships between entities using graph structures to enable structured, multi-
hop reasoning. Graph Neural Networks (GNNs) propagate information along edges, uncovering
implicit connections opaque to pure text-based models. For example, in Plan-on-Graph [73], large
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language models (LLMs) are used in conjunction with a knowledge graph to adaptively plan and
adjust tasks, ensuring that reasoning remains accurate and grounded in real-world knowledge.
(a) Dynamic Graph Construction: Dynamic graph construction [74] refers to the real-time creation of
graphs from raw data, allowing for flexible and adaptive reasoning. For example, in the domain of
healthcare, a model could dynamically build a patient health graph from Electronic Health Record
(EHR) notes. This graph might link patients to diagnoses, treatments, medications, and outcomes, and
can be updated in real-time as new information becomes available.
(b) Neural-Symbolic Graphs: In some scenarios, symbolic rules can be incorporated into graph-based
reasoning to enforce more structured and interpretable logic. For instance, a Neural-Symbolic Graph
combines GNNs with symbolic reasoning rules to enforce relationships such as: "If X inhibits Y, and Y
causes Z, then X may indirectly affect Z."

4.3.4. Training Paradigm Innovations

Redefines LLM training to explicitly prioritize reasoning skills, moving beyond next-token predic-
tion to cultivate step-by-step logical capabilities.
(a) Reasoning-Aware Pretraining: Incorporate logic-heavy tasks into the pretraining phase. These
tasks might include:

Program synthesis, where the model learns to generate programs based on high-level specifica-
tions.

Theorem proving, where the model is trained to prove or disprove mathematical theorems step-
by-step.
(b)Staged Fine-Tuning: Supervised: Learns basic reasoning decomposition (aligned with 3.1 Task
Decomposition). Reinforcement Learning from Human Feedback (RLHF) [75]: This stage focuses on
optimizing for human-preferred reasoning traits, such as conciseness, correctness, and clarity. The
model is iteratively fine-tuned based on human feedback, ensuring that its reasoning aligns with
human expectations and decision-making processes.

5. Models of IR Using Reasoning
5.1. Classification of Models
5.1.1. Retrieval-Phase Reasoning

Query Expansion/Rewriting: Enhances initial search queries by generating hypothetical docu-
ment embeddings or reformulating ambiguous user inputs into precise search terms.

Dynamic Context Integration: Adapts retrieval strategies based on real-time reasoning about
query intent.

5.1.2. In-Retrieval Reasoning

Adaptive Ranking: Dynamically reorders results using intermediate reasoning. Content-Aware
Filtering: Applies logical constraints during retrieval.

5.1.3. Post-Retrieval Reasoning

Evidence Synthesis: Combines retrieved documents via generative reasoning. For example,
RAG-Fusion’s weighted answer aggregation [76]). Consistency Verification: Cross-checks generated
answers against retrieved facts to reduce hallucinations.

5.2. The Evolution of IR Models Using Reasoning

According to the Table 2, it can be found there are some overlaps between several models. For
example, REALM, RAG, HyDE and REPLUG all use dense retrieval technologies, which is a big
overlap in techniques for these models. Figure 6 is our overlap figure to show the similarities between
these models.
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Table 2. Comparison of Reasoning-Oriented Information Retrieval-Augmented Models (2018–2024).

Year Model Reasoning
Techniques

IR
Technology

Innovation Limitation

2018 IRNet [77] Symbolic
Reasoning

Neural
Semantic
Parsing

NL → SQL query
for structured DB

Schema rigidity;
ambiguity-prone

2019 REALM [78] Latent
Reasoning via
masked token

prediction

Dense
Retrieval

(BERT-based)

Retriever-reader
joint training

Needs large
pretraining; static

knowledge

2020 RAG [53] Multi-hop +
Generative
Reasoning

Dense
Retrieval +

Seq2Seq

Retrieval +
generation fusion

May hallucinate
from noisy docs

2021 ColBERT-
X [57]

Iterative
Query

Refinement
Reasoning

Sparse-Dense
Hybrid

Retrieval

Intermediate
query-level
reasoning

Costly in
conversations

2022 HyDE [48] Abductive
Reasoning

Embedding-
Based Dense

Retrieval

Generates ideal
retrieval queries

Prompt-sensitive;
sometimes
unrealistic

2022 Self-
RAG [62]

Self-Verifying
(LLM

feedback
reasoning)

Adaptive
Retrieval +
Reranking

Adds confidence
via self-critique

Higher latency

2023 REPLUG [54] Multi-path
Reasoning +

Voting

Dense
Retrieval
Ensemble

Aggregates via
voting across

retrieved paths

Memory-heavy;
requires ensemble

tuning
2023 RAG-

Fusion [76]
Probabilistic
Reasoning
over query

variants

Query
Rewriting +
Reranking

Blends and
re-ranks multiple
rewritten queries

May over-retrieve
and rerank

irrelevant ones

2024 CLIP-ER Multimodal
Analogical
Reasoning

Cross-Modal
(Text + Image)

Retrieval

Visual-textual
joint alignment
for analogical

reasoning

Needs aligned
multimodal data

Figure 5. Technological Overlap Among Reasoning-Enhanced IR Models.
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5.3. Applications

Table 3 shows a brief collection of applications of IR models using reasoning methods, and we
also give an example of the applications.

Table 3. Summary of Applications of IR Models Using Reasoning Methods.

Application Characteristics Examples

Open-Domain QA

• Requires broad knowledge
coverage

• Precise answer synthesis
• Handles multi-fact ques-

tions

REPLUG [54]; retrieving
Tesla’s patents, power grid

evolution docs,
technological transfer

Scientific Literature
Search

• Domain-specific reasoning
• Infer research connections
• Handle technical terms

SciBERT [79]; biomedical
terminology, causal

pathways, methodology
validation

Multimodal Retrieval

• Cross-modal alignment
• Unified reasoning
• Context-aware learning

CLIP-ER [80]; quantum
physics concepts, text-visual
alignment, diagram quality

6. Challenges & Future Directions
According to numerous research findings and the preview of the development of reasoning

methods, there are three kinds of reasoning related work, that we should put more emphases on
multi-step reasoning, consistency&reliability and domain-specific adaptation.

6.1. Multi-Step Reasoning
6.1.1. Challenge

Despite advances in language modeling, LLMs still struggle with complex, multi-step reasoning
tasks [27], such as those involving long-term dependencies or tasks that require a sequence of logical
steps. In traditional models, reasoning is often limited to surface-level or shallow inferences, where the
model may understand simple patterns but fail at deeper reasoning tasks. This is particularly true in
tasks requiring multiple steps of reasoning or those that involve integrating information from diverse
contexts or sources.

6.1.2. Future Directions

(a) Enhancing Reasoning Through Modular Systems:

One promising future direction involves breaking reasoning tasks down into smaller, more manageable
components and developing modular reasoning systems [81] that allow LLMs to handle multi-step
reasoning more effectively.

(b) Integration of External Tools:

Future work could explore integrating external tools, such as symbolic reasoning engines or dedicated
problem-solving algorithms, to guide LLMs through complex task.

6.2. Consistency & Reliability
6.2.1. Challenge

LLMs, especially in zero-shot or few-shot settings, can exhibit inconsistent reasoning patterns.
The output from a model may vary significantly depending on the phrasing of the prompt or the
input context, leading to unreliable results. This inconsistency becomes more problematic in critical
applications such as healthcare, law, and finance, where reliable and consistent reasoning is crucial for
decision making.

6.2.2. Future Directions

(a) Enhanced Training Data and Techniques:
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One possible research direction is to focus on improving training datasets to include more consistent
examples and more robust reasoning processes. This could involve creating specialized datasets for
reasoning that emphasize consistency and reliability.

(b) Consistency-Aware Models:

Another avenue is to develop models that can evaluate their own outputs for consistency, potentially
incorporating self-monitoring and self-correction mechanisms into their reasoning process.

6.3. Domain-Specific Adaptation
6.3.1. Challenge

A persistent challenge in the domain-specific adaptation of Large Language Models (LLMs) lies in
their limited ability to effectively integrate external knowledge into coherent reasoning processes [82].
Although retrieval-augmented generation (RAG) and similar methods introduce mechanisms for
accessing relevant external documents, the reasoning integration phase remains underdeveloped.

Specifically, LLMs often struggle to accurately select, align, and synthesize information from
heterogeneous sources. This is particularly problematic in specialized domains, where high precision
and contextual awareness are critical.

6.3.2. Future Directions

(a) Improved Retrieval-Integration Mechanisms:

Future research could explore developing more sophisticated retrieval strategies that can better filter
irrelevant knowledge, improving the integration process. One promising direction is using multi-step
reasoning to refine the relevance of retrieved knowledge during the reasoning process.

(b) End-to-End Systems:

End-to-end systems refer to systems where the process of knowledge retrieval, integration, and
reasoning is handled in a unified and continuous flow, rather than as distinct steps.

Conclusion
Reasoning stands at the heart of intelligent behavior, and as this study reveals, it remains one

of the most significant challenges and opportunities in the continued evolution of Large Language
Models (LLMs). While LLMs have demonstrated impressive capabilities in language understanding
and generation, their limitations in structured, multi-step, and context-aware reasoning highlight a
critical bottleneck in advancing toward more reliable and general-purpose AI.

In surveying and analyzing the landscape of reasoning techniques—ranging from prompt en-
gineering and task decomposition to retrieval-augmented reasoning and neural-symbolic architec-
tures—we observed that effective reasoning is not a monolithic ability but a layered, often modular
process. Particularly within Information Retrieval (IR), reasoning plays an increasingly vital role in
bridging the gap between surface-level pattern matching and deeper semantic understanding. Our
exploration of reasoning-enhanced IR models underscores how integrating reasoning mechanisms into
the retrieval and answer generation pipelines can yield measurable improvements in both performance
and interpretability.

Throughout the process of collection and synthesis, we found that many IR systems implicitly
rely on reasoning—even if not explicitly labeled as such—and that a growing number of models are
now being designed with reasoning capabilities as a core component rather than an auxiliary function.
This shift reflects a broader recognition that the future of IR and NLP more generally depends not just
on accessing knowledge, but on processing it intelligently.

Looking ahead, we believe that advancing reasoning in LLMs will require a combination of
principled architectural innovation, better training data with explicit reasoning traces, and a deeper
understanding of how different types of reasoning interact with specific downstream tasks. As the
community moves forward, we encourage further interdisciplinary collaboration between the fields
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of IR, NLP, logic, and cognitive science to push the boundaries of what it means for AI to think and
reason.

Funding: This work is funded by the National Natural Science Foundation of China (NSFC) under Grant
[No.62177007].
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