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Abstract

Code retrieval is central to coding agents. It is the process of sourcing relevant code snippets, documen-
tation, or knowledge from repositories into the context for the agent to make informed actions. Thus, 
efficient code retrieval could have a major positive impact on the performance of coding agents and 
the quality of their output. This study delves into different code retrieval techniques, their integration 
in agentic workflows, and how they enhance coding agent output quality. We compare how human 
programmers and agents interact with tools, analyze lexical versus semantic search for code retrieval, 
evaluate retrieval’s impact, and review benchmarks focusing on metrics such as latency, tokens, context 
utilization, and iteration loops. We report takeaways on the effectiveness of different retrieval tools, 
potential solutions, and opportunities for further research.

Keywords: code retrieval; coding agents; agentic retrieval; semantic code search; code search bench-
marking; context management

1. Introduction
Large Language Model (LLM) based coding agents represent a paradigm shift in software en-

gineering, moving beyond simple code completion to autonomously planning, implementing, and
refining solutions. These agents operate through an iterative agentic loop: they observe the current
state of the development environment and task context, reason about appropriate actions using the
foundation model, execute actions through tool calls (such as reading/writing files, running tests, or
searching code), receive feedback from the environment, and repeat until the task is complete.

The critical bottleneck in this loop is the initial observation phase: gathering relevant code context
from the target repository. Modern codebases frequently exceed thousands of files and millions of
lines of code, far beyond the effective context window of even the most advanced language models.
An agent cannot simply ingest an entire codebase; it must selectively retrieve the subset of code that is
relevant to the task at hand. The quality of this retrieval directly determines whether the agent can
reason about the correct architectural patterns, dependencies, conventions, and implementation details
needed to generate appropriate code.

Code retrieval for agents has evolved along several distinct technical trajectories. Lexical search ap-
proaches use pattern-matching tools like grep and ripgrep to locate code based on exact or regex-based
text matching. Semantic search techniques, typically implemented through Retrieval-Augmented
Generation (RAG) pipelines, embed code chunks into vector spaces and retrieve based on conceptual
similarity rather than keyword overlap. Language Server Protocol (LSP) integration provides struc-
tured symbol navigation (go-to-definition, find-references, and workspace symbol search) mirroring
the tools used by human developers in IDEs. Agentic search strategies give models direct access to
repository primitives (file listing, pattern search, shell commands) and allow them to dynamically
compose retrieval queries at inference time. Finally, multi-agent architectures delegate retrieval to
specialized sub-agents that handle context gathering independently from the primary coding agent.

Despite the rapid proliferation of these techniques, systematic evaluation remains scarce. Leading
coding agents make divergent architectural choices: some rely entirely on lexical tools, others build
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sophisticated semantic indexes, and many employ hybrid approaches. Yet practitioners lack rigorous
comparative data to guide these decisions. This paper investigates the fundamental trade-offs between
retrieval techniques through qualitative analysis of how production coding agents approach code
search in realistic software engineering tasks.

The generative prowess of the LLMs that power these agents is undeniably critical. LLMs possess
vast stores of knowledge learned from extensive training on public repositories, including billions of
lines of code. However, this parametric knowledge, while powerful, is inherently static and general-
purpose. When applied within the scope of a specific software project, standalone LLMs exhibit several
critical limitations that curtail their effectiveness and reliability.

Project-Specific Context. The model’s ability to generate syntactically correct code is of little
value if that code is contextually inappropriate, architecturally inconsistent, or functionally incorrect
within the scope of a specific project. Every software project has its own unique architecture, design
patterns, coding conventions, and dependencies. LLMs, trained on a broad corpus of public code, lack
awareness of these project-specific nuances. As a result, they may generate code that is syntactically
valid but misaligned with the project’s architectural principles or coding standards.

Knowledge Cutoff Date. LLMs have a fixed knowledge cutoff date, meaning they are unaware of
any developments, libraries, frameworks, or best practices that emerged after their training data was
collected. In the fast-evolving landscape of software development, this limitation is significant. New
programming frameworks and libraries are continually introduced, and existing ones evolve rapidly.
For example, without documentation, models cannot update a codebase from Tailwind 3 to Tailwind
4.1 This creates a gap between the model’s training and the current state of the software ecosystem,
which can lead to outdated or suboptimal code suggestions.

Ability to Test and Debug. While LLMs can generate code, the code is of no use if it doesn’t work
as intended. They lack context on how to test and debug code within an existing codebase.

Context Limitation. With new models like Claude Sonnet 3.7, 4.0 [1] and GPT-5 [2], reasoning isn’t
the bottleneck anymore. Context quality is. According to the DeepMind technical report [3], models
with 1M context window like Gemini 2.5-pro [4] only utilize 100k window for quality reasoning.2 The
content supplied within that context window becomes critical.

Overall, code retrieval is the process by which an agent sources relevant information (code
snippets, guidelines, documentation, architectural patterns, and project-specific conventions) from the
target codebase to inform its generation process. The choice of retrieval technique dictates the agent’s
capacity to understand the existing context, handle the complexity of large and unfamiliar repositories,
and generate code that is not just plausible in isolation but correct and appropriate for the specific task
at hand.

2. Background and Related Work
2.1. Brief History of Development Environments

In the early days of interactive programming, the development environment was the command
line, and the primary tool was the text editor. Two editors from this era, vi and Emacs, came to
represent two distinct and enduring philosophies of tool design.

Developers were caught in a tedious and inefficient iterative cycle: write code in a text editor, save
the file, switch to the command line to invoke a compiler, manually read the error messages (which
often only provided line numbers), and then switch back to the editor to navigate to the correct line and
fix the bug. Each step was a manual context switch that broke concentration and slowed progress [5].

This gave birth to the integrated development environment (IDE), which combined editing,
building, and debugging into a single application [6].

1 Tailwind CSS is a utility-first CSS framework. Version 4 introduced breaking changes in configuration and class naming that
require migration guides unavailable to models trained before its release.

2 While modern LLMs advertise context windows of 1M+ tokens, empirical evidence suggests effective utilization plateaus at
approximately 100k tokens for reasoning-intensive tasks.
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In 2016, Microsoft released the Language Server Protocol (LSP)3 [7]. LSP decoupled language-
specific intelligence (like code completion and error checking) from the editor itself, allowing any
language to gain deep IDE support in any editor that implemented the protocol. This led to a
renaissance in editor innovation, with lightweight editors like Visual Studio Code and Sublime Text
gaining popularity alongside traditional IDEs like IntelliJ and Eclipse.

These days, programmers typically leverage IDE features such as IntelliSense for autocompletion,
fuzzy search for quick file navigation, and plugins for version control. These tools emphasize human-
centric interfaces, with searches often based on keywords or partial matches to handle typos or
incomplete queries.

2.2. Lexical Search

The first major breakthrough in automated code retrieval came in 1973 with the creation of the
grep utility at Bell Labs [8]. The tool, whose name derives from the ed editor command g/re/p (global
/ regular expression / print), was written by Ken Thompson to solve a practical problem: the ed text
editor could not search through the large text files of The Federalist Papers because it had to load the
entire file into memory. Thompson extracted the regular expression matching code from ed into a
standalone tool that could process files sequentially, regardless of their size.

grep was a revolutionary tool for developers. For the first time, they had an automated, powerful,
and fast way to search across entire directories of source code for specific strings, variable names,
function calls, or complex patterns using regular expressions. It became the prototypical software
tool, embodying the Unix philosophy of small, single-purpose utilities that could be combined to
perform complex tasks. Variants like egrep and fgrep were later added to support extended regular
expressions and fixed-string searches, respectively.

The principles embodied by grep have been refined and optimized in modern tools specifically
engineered for searching large codebases. A prominent example is ripgrep (rg) [9], a line-oriented
search tool built in Rust that is significantly faster than grep in many common developer scenarios. Its
performance advantage stems from being built on Rust’s highly optimized regex engine, which uses
finite automata and SIMD, and its ability to perform searches in parallel. Crucially for programmers,
ripgrep offers smarter defaults for code search: it automatically searches recursively, respects rules in
.gitignore files, and skips hidden files and binaries. This focus on the developer workflow has led to its
adoption within other popular tools; for instance, Visual Studio Code uses ripgrep internally for its
file search functionality.

While grep remains a ubiquitous and powerful utility, tools like ripgrep represent the next
evolutionary step in lexical search, tailored for the scale and structure of modern software projects.

2.3. Semantic Search

Semantic code search is the task of retrieving relevant code given a natural language query.
Instead of matching keywords, it aims to understand the intent and contextual meaning behind a
user’s query. It operates on the principle of conceptual matching rather than literal matching. This
approach aims to bridge the gap between natural language queries and programming implementations,
understanding conceptual relationships rather than requiring exact keyword matches [10].

While search for natural language documents and even images has made great progress, code
search remains unsatisfying. Standard information retrieval methods do not work well for code search
because there is often little shared vocabulary between search terms and results. For example, a
method called deserialize_JSON_obj_from_stream may be a correct result for the query "read JSON
data," despite having no overlapping keywords. [10]

3 The Language Server Protocol is an open standard that decouples language-specific tooling (code completion, go-to-definition,
error checking) from editors, enabling any language to provide IDE features in any LSP-compatible editor.
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2.3.1. Retrieval-Augmented Generation (RAG) for Code

The core idea behind RAG is to ground the LLM in external, authoritative knowledge, thereby
reducing the likelihood of generating factually incorrect or contextually inappropriate responses.4

When applied to software development, the codebase itself becomes the external knowledge base. The
RAG pipeline for code involves steps such as:

Ingestion and Chunking: The source code of a project is first parsed and divided into smaller,
meaningful units or "chunks." This step is more complex for code than for plain text. Naive splitting
can break apart logical units. Therefore, effective strategies often use syntax-aware chunkers, for
instance, those based on tree-sitter [11],5 to split code along logical boundaries like functions, classes,
or methods, ensuring that each chunk is a complete, coherent unit [12]. Embedding and Indexing:
Each code chunk is then processed by an embedding model to produce a vector representation. These
vectors are stored and indexed in a specialized vector database, which is optimized for efficient high-
dimensional similarity search [13,14]. Retrieval: When a developer poses a query to the coding agent,
the query is also converted into a vector using the same embedding model. The vector database is then
queried to find the code chunks whose vectors are most similar to the query vector. [14] Augmentation
and Generation: The content of the top-ranked retrieved code chunks is then concatenated with the
original user query. This combined text, rich with relevant context from the actual codebase, is then
fed into the LLM’s prompt. The LLM uses this augmented context to generate a final response that is
grounded in the project’s specific code and conventions [15].

Empirical studies have validated the effectiveness of RAG for code generation [16,17]. However,
they also reveal important nuances. Some research indicates that not all retrieved information is equally
helpful [17]. While providing contextual code from the current file and relevant API documentation
significantly boosts performance, retrieving "similar code" from other parts of the repository can
sometimes introduce noise and degrade the quality of the final output.

However, industry practitioners have raised strong counter-arguments against the universal
applicability of RAG for coding agents. Figures like Nick Pash, Head of AI at Cline, argue that RAG
can be a ’seductive trap’ for coding tasks [18]. The core of this critique is that code is inherently logical
and structured; unlike unstructured text, it does not always benefit from being broken down into
semantically similar but contextually isolated chunks [pash2024ragcode]. This approach, critics argue,
is fundamentally different from how a senior engineer familiarizes themselves with a new project by
exploring folder structures, following import statements, and reading whole files to build a mental
model of the architecture. Indexing an entire codebase with embeddings is seen as not only potentially
unnecessary but also a security risk, leading some of the most prominent agent development teams to
abandon RAG in favor of more direct, exploratory methods [19].

2.3.2. Code Knowledge Graphs

A Code Knowledge Graph (CKG) is a specialized knowledge graph that represents a codebase
as a network of interconnected entities. Nodes represent code elements such as classes, functions,
variables, and files, while edges capture relationships including function calls, inheritance hierarchies,
data dependencies, and cross-file references. This structured representation provides a deeper, more
contextual understanding of software projects compared to traditional flat text analysis.

CKGs offer three key advantages for code retrieval: (a) they narrow the search space to highly
relevant entities through explicit relationship paths, (b) they expose traceable multi-hop connections
that improve explainability, and (c) they return compact structured context rather than verbose file
dumps, thereby improving recall, precision, and auditability for repository-scale tasks [20].

4 RAG is a technique that enhances LLM outputs by retrieving relevant external documents or code snippets and including
them in the prompt context, grounding generation in authoritative sources.

5 Tree-sitter is a parser generator tool and incremental parsing library that builds concrete syntax trees for source code, enabling
language-agnostic structural code analysis.
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Recent empirical work demonstrates the effectiveness of coupling LLMs with code graph
databases. CodexGraph, for instance, implements an LLM-graph database architecture where agents
issue graph queries to retrieve structure-aware context for cross-file tasks, consistently outperforming
similarity-based retrieval baselines [21]. Similarly, repository-aware knowledge graphs that unify code
entities with repository artifacts (issues, pull requests) have shown remarkable success in bug localiza-
tion, with 69.7% of successfully localized bugs requiring multi-hop graph traversals and achieving
84.3% file-level coverage [20].

However, CKGs require substantial engineering investment. Building and maintaining repository-
level knowledge graphs involves complex challenges: multi-language parsers, schema design for
diverse codebases, incremental updates in continuous integration pipelines, graph database optimiza-
tion for large monorepos, and precise alignment between textual artifacts and code symbols.

2.4. Language Server Protocol (LSP)

The Language Server Protocol (LSP) is an editor server API that exposes symbol resolution (go-to-
definition, find-references), type information, AST fragments, and diagnostics, making it a natural,
structured source of semantic signals for retrieval in coding agents [22].

Unlike lexical search tools, LSP maintains comprehensive symbol tables and abstract syntax trees,
enabling precise code navigation that understands language semantics [22].

LSP’s strength for coding agents lies in its ability to perform global and precise code retrieval
across programming environments, supporting IDE-like functionality such as go-to-definition, find-
references, and workspace symbol search. The protocol handles complex scenarios that text-based
search cannot, such as resolving overloaded methods, navigating inheritance hierarchies, and distin-
guishing identically named symbols across different scopes.

Recent implementations in multi-agent systems demonstrate LSP’s effectiveness for agent work-
flows. The MarsCode Agent framework leverages LSP for fuzzy positioning techniques and multiple
search strategies, achieving 88.3% file localization accuracy across 12 programming languages [23].
LSP integration also enables sophisticated diagnostic workflows, allowing agents to validate code
modifications and ensure syntactic correctness before application.

However, LSP requires initial setup and configuration for each project, and its optimization for
human-interactive workflows may not align perfectly with agentic coding patterns. Despite these
limitations, LSP provides a mature, standardized approach that bridges the gap between lexical search
and deep semantic understanding, making it valuable for precise code retrieval in agent systems [24].

2.5. Agentic Search

Agentic search represents a class of approaches where an LLM-driven agent is given repository
and system-level primitives (e.g., list/find files, read files with rg/cat, pattern search like grep, run
bash commands, or perform web lookups). The LLM itself decides at runtime which sequence of
actions to take to gather the precise code context needed to answer a query. This interleaving of
reasoning and acting (deciding and issuing tool calls, then conditioning on observations) is the core
idea behind ReAct-style and tool-using agent paradigms [25].

Crucially, the retrieval strategy is not hand-coded. Instead, developers expose a toolbox
(find/read/search/exec/web), and the model synthesizes queries, selects files, composes rg/grep
patterns, or elects to run commands to produce runtime traces, effectively deciding how to gather
relevant code context without an explicit procedural retrieval plan. Work on automatic tool-use and
action-interleaving (e.g., Toolformer, ReAct, and program-execution designs) documents how language
models can learn or be prompted to choose and integrate such external operations [26].

Concrete tooling examples exposed to agents include repository navigation (list/find), symbol or
pattern search (rg/grep), executing builds/tests or running shell tools (bash), and web/API lookups
for documentation and package sites. Recent repository-aware agents and frameworks (e.g., CodeNav
and RepoAgent family) explicitly implement these primitives and demonstrate how agents use them
to assemble the runtime context needed for accurate retrieval and downstream code tasks [27].
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Empirically, several recent studies that instrument LLM agents with repository and shell-level
tools report substantive improvements on repository-level tasks, including better pinpointing of
relevant files and snippets, more reliable answers, and higher task success rates compared to single-
shot or plain RAG baselines [24,27]. However, many systems combine multiple improvements,
so isolated ablations comparing agentic versus non-agentic approaches with identical models and
rerankers are required to quantify the causal effect precisely.

This empirical advantage is further validated by industry adoption patterns. Claude Code
developers made a deliberate architectural choice to avoid RAG in favor of agentic search. In early de-
velopment, the team experimented extensively with off-the-shelf RAG solutions, including embedding-
based retrieval using Voyage6 and various other RAG variants. However, these experiments were
ultimately abandoned when agentic search consistently outperformed RAG approaches across both
internal benchmarks and subjective quality evaluations.7 This decision by a leading AI lab suggests
that for production-grade coding agents operating at scale, the flexibility and context-awareness of
agentic retrieval may offer advantages that static embedding-based approaches cannot match.

In summary, agentic search allows the model to compose repository and runtime-level actions at
inference time to gather precisely the code context it needs. Early repository-aware agent work shows
clear practical gains, but rigorous ablations are needed to isolate the benefit of tool-driven retrieval.

2.6. Multi-Agent and Sub-Agent Architectures

As coding tasks grow in complexity, a natural question emerges: should retrieval be handled by
the same agent that performs code generation, or be delegated to a specialized retrieval agent? Multi-
agent architectures partition responsibilities across multiple LLM-powered agents, each optimized for
distinct subtasks such as code search, analysis, generation, and testing.

The architectural choice between integrated and decomposed retrieval has significant implications.
In integrated architectures, a single agent uses retrieval tools (grep, LSP, RAG) as part of its general-
purpose toolkit, interleaving search with reasoning and code modification. In contrast, multi-agent
systems employ specialized retrieval agents that can be invoked by a coordinator or primary coding
agent when context gathering is needed.

Proponents of specialized retrieval agents argue that decomposition enables focused optimization:
a retrieval agent can be fine-tuned or prompted specifically for search quality, employ domain-specific
ranking heuristics, and maintain dedicated state for iterative refinement of search queries [28]. Multi-
agent frameworks like AutoGen and MetaGPT demonstrate how orchestrating multiple specialized
agents can improve task decomposition and parallel execution [29,30].

However, specialized retrieval introduces coordination overhead. The primary agent must
recognize when retrieval is needed, formulate explicit requests to the retrieval agent, and integrate
returned context into its working memory. Recent empirical work suggests that for many repository-
level coding tasks, well-prompted single agents with direct tool access can match or exceed the
performance of multi-agent systems while avoiding inter-agent communication costs [31].

A critical challenge in multi-agent architectures is context fragmentation: when agents operate in
parallel without shared context, each action embeds implicit decisions that may conflict with decisions
made by other agents. The Cognition team behind Devin argues that current LLMs lack robust
mechanisms for decision synchronization across agents, recommending single-threaded approaches
with explicit coordination points rather than naive parallel decomposition [32]. This suggests that
the key distinction is not single-agent versus multi-agent, but rather poorly coordinated versus well-
coordinated agent systems with clear synchronization boundaries.

The debate mirrors broader questions in agentic system design: whether task decomposition
should be architectural (multiple specialized agents) or behavioral (single agent with diverse tools and

6 Voyage AI: https://www.voyageai.com/
7 Boris Cherny, Head of Claude Code at Anthropic, discussed this architectural decision in a Latent Space podcast interview:

https://www.youtube.com/watch?v=zDmW5hJPsvQ (2025).
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instructions). For code retrieval specifically, the choice depends on factors including task complexity,
codebase scale, retrieval technique sophistication, and whether retrieval quality benefits from dedicated
optimization versus tight integration with the generation loop.

3. Study Design
3.1. Research Objectives

Despite the rapid proliferation of coding agents and retrieval techniques, fundamental questions
about their effectiveness remain unresolved. Practitioners report different experiences, and the lack of
standardized evaluation makes it difficult to compare approaches systematically. This study addresses
three central questions:

RQ1: Does semantic search provide advantages over lexical search for coding agents?
While RAG has transformed many AI applications, leading practitioners are divided on its value

for autonomous coding. Some view RAG-based semantic search as essential for handling large,
unfamiliar codebases, enabling agents to find conceptually relevant code even without exact keyword
matches. Others characterize it as "cognitive overhead" that degrades reasoning quality by introducing
noise through decontextualized code chunks [18] [pash2024ragcode]. Early experiments with off-the-
shelf RAG solutions in prominent coding agents showed mixed results, with some teams ultimately
abandoning semantic indexing in favor of agentic lexical search [19]. This question seeks to understand
under what conditions, if any, semantic retrieval provides measurable benefits to agent performance.

RQ2: Do agents benefit from the same retrieval tools that human programmers use?
Human developers rely heavily on IDE-integrated tools like LSP servers for precise code naviga-

tion: go-to-definition, find-references, and symbol search. These tools provide structured, semantically-
aware retrieval that understands language constructs, scope, and cross-file dependencies. However,
LSP was designed for interactive human workflows, not autonomous agent loops. It remains unclear
whether agents can effectively leverage LSP’s precision, or whether simpler lexical tools like grep and
ripgrep are more aligned with how models explore and synthesize context. This question investigates
whether human-centric tooling translates to agent-centric performance.

RQ3: Does specialized retrieval delegation to sub-agents improve coding agent performance?
As coding tasks grow more complex, some systems employ multi-agent architectures where a

dedicated retrieval agent handles context gathering, separate from the primary coding agent. This
decomposition theoretically enables focused optimization of retrieval quality and parallel execution.
However, it introduces coordination overhead and inter-agent communication costs. Single-agent
systems with integrated tool access may achieve comparable or superior performance by tightly
coupling retrieval with generation. This question examines whether architectural decomposition of
retrieval provides measurable advantages over integrated approaches.

3.2. Research Approach

Answering these research questions requires both qualitative insight into practitioner decision-
making and an understanding of how retrieval mechanisms are implemented in practice. This study
adopts an exploratory, qualitative approach aimed at creating a rigorous foundation for quantitative
benchmarking of retrieval techniques in coding agents.

Our objective is to conduct qualitative analysis of how leading coding agents approach code
retrieval, document their strategies and trade-offs, and build hypotheses around creating a comprehen-
sive benchmark for evaluating retrieval performance. We achieve this through manual experimentation
with multiple agents on controlled tasks, analyzing their retrieval strategies, tool usage patterns, and
resource consumption. The goal is to understand the diversity of approaches, surface design trade-offs,
identify metrics that correlate with practical performance, and establish the methodological foundation
for future quantitative evaluation.

This exploratory study answers the core research questions while generating insights that will
inform the design of a rigorous, quantitative benchmark for evaluating retrieval techniques across di-
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verse tasks, repositories, and agent configurations. The benchmark development, including controlled
experiments with isolated variables, automated instrumentation, and statistical analysis, is discussed
in the Future Work section.

3.3. Study Methodology
3.3.1. Task Selection

To study retrieval behavior in a realistic setting, we selected a non-trivial refactoring task on
an open-source production codebase. The task requires multi-file code search, understanding of
architectural patterns, and contextual reasoning: characteristics representative of real-world software
engineering work.

Repository: InfraGPT, an open-source DevOps debugging agent [33]. The repository contains
over 50,000 lines of code across 338 files. It is a monorepo with 5 major components (cli agent, website,
console, backend, and background agent service). Its moderate size and clear architectural boundaries
make it suitable for controlled observation while remaining representative of practical coding agent
use cases.

Table 1. Repository code statistics showing language distribution.

Language Files Lines Blank Comment Code

JSON 12 23,401 2 0 23,399
Go 97 12,334 1,693 348 10,293
TypeScript JSX 58 8,070 685 604 6,781
Python 63 5,762 1,109 349 4,304
TypeScript 26 2,700 326 292 2,082
Markdown 30 2,692 701 0 1,991
JavaScript 7 821 64 179 578
SQL 25 666 86 98 482
Bourne Shell 5 357 64 89 204
CSS 3 173 12 1 160
Toml 4 120 15 0 105
Makefile 1 76 9 8 59
Protobuf 2 88 25 21 42
YAML 1 41 8 0 33
HTML 1 20 3 0 17
Docker 1 38 10 11 17
Autoconf 1 3 0 0 3
Plain Text 1 4 1 0 3

Total 338 57,366 4,813 2,000 50,553

Retrieval Task description: Find GitHub connector interface implementations. This task requires:
• Identifying the correct service directory where the GitHub connector is located across multiple

folders and services
• Finding the location where the GitHub connector interface is defined across multiple files
• Understanding existing methods and validating whether they implement the GitHub connector

interface
The task’s multi-file, context-dependent nature stresses retrieval mechanisms and reveals how

agents gather and synthesize distributed code context.

3.3.2. Agent Selection

We selected prominent coding agents that represent diverse architectural paradigms and retrieval
mechanisms. Selection criteria included:

• Adoption and community engagement (measured by GitHub stars, issue activity, and social
media discussion),

• Diversity of retrieval approaches (agentic search, semantic indexing, LSP integration, multi-agent
architectures), and
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• Availability for analysis through either open-source code or comprehensive documentation.

To understand retrieval implementation strategies, we analyzed both the source code and docu-
mentation of these agents. For open-source agents, we examined the codebase directly to understand
retrieval mechanisms, tool implementations, and architectural decisions. Specifically, we analyzed
the source code of Codex CLI [34], Gemini CLI [35], Cline [36], and Aider [37]. For closed-source
agents with comprehensive public documentation, we studied their documented architecture, API
specifications, and design rationale. Specifically, we analyzed the documentation of Claude Code [38],
Amp [39], and Cursor [40]. For LSP integration experiments, we utilized an open-source MCP server
implementation [41] to enable Language Server Protocol capabilities in Claude Code.

The selected agents, detailed in Table 3, include Claude Code (agentic search with custom tools),
Gemini CLI (agentic search with tool orchestration), Codex CLI (shell command orchestration), Cursor
(hybrid semantic-lexical indexing), and Amp (hybrid multi-tool with guided context). This set spans
CLI-native and IDE-integrated paradigms, explicit and implicit context provisioning, and single-agent
and multi-agent architectures.

3.3.3. Data Collection Protocol

For each agent, we executed the retrieval task multiple times to account for non-deterministic
LLM behavior and capture variability in retrieval strategies. All runs used the same task prompt and
initial repository state. We employed Sonnet 4.5 [1], GPT-5 [2], and Gemini 2.5 Pro [4] in that order
as the underlying models when configurable, selecting state-of-the-art reasoning models to isolate
retrieval performance from model capability limitations.

For each run, we collected:

• Qualitative observations: Retrieval strategy (tools invoked, search patterns, file exploration
order), decision-making transparency (whether the agent’s retrieval logic is interpretable), and
notable behaviors (iterative refinement, context re-gathering, tool failures).

• Quantitative metrics: Context window utilization as our primary metric (total tokens consumed
including input, output, and reasoning). In addition, we recorded cost per run (based on model
pricing), tool call counts (categorized by type: file read, search, navigation, execution), and task
completion status.

• Execution traces: Trace of agent interactions, full chat logs or code files, and retrieved context
snapshots (which files/snippets were included in prompts).

All execution traces are documented and will be made available in the paper’s Appendix section
to support reproducibility and community scrutiny.

3.3.4. Analysis Approach

Our analysis is primarily qualitative and comparative, aimed at identifying patterns and trade-offs
rather than establishing definitive causal claims. We perform:

Cross-agent comparison: Systematic comparison of retrieval strategies, identifying commonalities
(e.g., all agents start with directory exploration) and divergences (e.g., semantic vs. lexical search, LSP
vs. grep).

Metric correlation analysis: Examining whether token consumption, cost, or tool call patterns
correlate with task completion success and output quality (assessed through manual code review).

Tool usage characterization: Categorizing which retrieval primitives each agent employs, how
frequently, and in what sequences. This reveals whether certain tool combinations are more effective.

Failure mode identification: Documenting context window utilization from retrieval task execu-
tions. We analyze how different retrieval strategies impact context efficiency and identify scenarios
where the agent drifts from the task, leading to context rot.

The exploratory nature of this study means findings are hypothesis-generating rather than
hypothesis-testing. Our goal is to build intuition, surface unexpected behaviors, and identify promising
directions for rigorous quantitative evaluation in future work.
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3.4. Scope and Limitations

This exploratory study has several important limitations:

• Single task, single repository: Findings may not generalize across different task types (bug
fixing, feature addition, documentation), repository characteristics (language, size, architecture),
or domains.

• Subjective analysis: While we collect quantitative metrics, much of the analysis relies on qualita-
tive interpretation of agent behavior. Different researchers might draw different conclusions.

• No variable isolation: Agents differ in multiple dimensions simultaneously (model, prompt,
tools, architecture). We cannot make causal claims about which specific factors drive observed
differences.

• Rapid ecosystem evolution: Coding agents and their retrieval mechanisms evolve quickly.
Findings reflect the state of tools at the time of experimentation and may become outdated.

These limitations are acceptable for an exploratory study designed to inform future rigorous evalu-
ation. This study provides a foundational understanding; future quantitative benchmark development
will address these limitations through controlled experimentation and statistical rigor.

4. Analysis
This section analyzes the search techniques and retrieval strategies employed by different coding

agents in our exploratory study. We examine each agent’s approach to code search, focusing on general
techniques applicable to code retrieval rather than task-specific implementation details. The section
concludes with comparative analysis of resource consumption patterns and architectural trade-offs.
Detailed execution traces and task-specific findings are provided in the appendices.

4.1. Claude Code

Claude Code employs lexical pattern matching with iterative refinement as its primary search
strategy. The agent’s approach demonstrates a three-phase progression from broad discovery to
targeted validation, applicable to general code retrieval tasks.

Multi-stage refinement strategy. The search process follows a systematic narrowing pattern:

• Broad discovery phase: Initial pattern-based searches cast a wide net using general keywords to
identify candidate locations across the codebase

• Progressive refinement: Iterative narrowing of search scope through more specific patterns and
filters, reducing candidate sets from broad matches to focused targets

• Targeted examination: Selective file reading of high-confidence candidates to extract and validate
findings

This strategy leverages complementary search primitives: content-based pattern matching using
regex (grep search) and file-structure navigation (glob search). The approach enables systematic explo-
ration from general to specific without requiring pre-indexed semantic embeddings or background
processing.

LSP integration experiment. An alternative approach attempted to augment lexical search with
Language Server Protocol capabilities through MCP integration. The experiment revealed practical
limitations of IDE-oriented tools for autonomous agents. LSP operations (symbol lookup, reference
finding, and type information queries) frequently failed due to coordinate precision requirements and
unexported symbol handling. The agent fell back to traditional lexical search for task completion, sug-
gesting that tools designed for interactive human workflows may not transfer directly to autonomous
operation without significant adaptation.

Architecture characteristics. Claude Code relies on agentic search, employing a tool-first ar-
chitecture centered on transparent lexical search [38]. The retrieval mechanism combines pattern
matching (grep search), file discovery (glob search), and direct file access, with optional shell command
orchestration for complex operations. A key architectural choice is whole-file reading: when accessing
files, the agent retrieves entire file contents rather than targeted snippets, contributing to higher token
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consumption but ensuring complete context availability. The architecture enables sub-agent delegation
for multi-step searches through specialized task invocation upon user prompt.

The system prioritizes transparency and tool availability over token efficiency: all search oper-
ations, patterns, and file accesses are visible to users, enabling verification of retrieval logic. This
contrasts with opaque semantic indexing where relevance scoring and document ranking occur in
background systems. The comprehensive tool inventory (system tools + optional MCP integration
[42]) consumes approximately 25.5k tokens (12.7% of context) before any retrieval operations begin,
reflecting a design trade-off favoring rich functionality and interpretability. Optional LSP server
augmentation [41] is supported, though lexical tools proved more reliable for autonomous operation
in our evaluation.

The full traces are in Appendix A.

4.2. Codex CLI

Similar to Claude Code, Codex CLI employs an iterative refinement strategy combining broad
keyword discovery with progressive pattern specialization. The search approach demonstrates systematic
narrowing through multiple refinement cycles, characteristic of human developer exploration patterns.

Search technique. The agent follows a three-phase exploration pattern:

• Broad keyword searches to identify initial candidate sets,
• Pattern-based refinement using regex to reduce candidates through structural constraints, and
• Targeted file reading with connector-specific validation. The approach leverages negative ev-

idence, where searches returning zero results inform architectural understanding and guide
subsequent query formulation. Progressive pattern specificity enables spatial reasoning about
codebase organization, narrowing from general terms to type-specific constructs.

The strategy demonstrates effective use of lexical search without pre-indexed embeddings, vali-
dating agentic pattern matching for code retrieval tasks.

Architecture characteristics. Codex [34] employs fuzzy file search as its primary retrieval mech-
anism, distinct from semantic indexing approaches. The implementation uses scoring systems that
reward prefix matches, contiguous character sequences, and spatial proximity in filenames. File
system traversal respects repository conventions (gitignore rules) while supporting parallel search.
The architecture delegates contextual understanding to LLM reasoning rather than implementing
sophisticated pre-processing or indexing, prioritizing simplicity and transparency.

The full trace is in Appendix B.

4.3. Gemini CLI

Similar to Claude Code, Gemini CLI employs an iterative agentic search strategy combining file
discovery, content search, and cross-referencing. The approach demonstrates systematic orchestration
of complementary search operations with batch optimization.

Search technique. The agent coordinates four distinct search patterns:

• Broad file pattern discovery using glob-based matching to identify candidate locations,
• Structural file location using targeted patterns to discover definitions,
• Parallel batch file reading to efficiently gather context from multiple sources, and
• Cross-reference searches to identify usage patterns and implementations.

The strategy demonstrates intelligent sequencing: locating definitions before searching for imple-
mentations, and using discovered context to inform subsequent queries.

Notable characteristics include batch optimization (reading multiple files per operation), strategic
glob pattern usage for targeted discovery, and cross-referencing techniques where initial findings guide
subsequent searches. The approach leverages caching mechanisms to reduce redundant operations
while maintaining search effectiveness.

Gemini CLI demonstrates effective tool orchestration for agentic search, successfully completing
retrieval tasks without semantic indexing through systematic operation sequencing.
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Architecture characteristics. Gemini CLI [35] combines multiple retrieval layers: file discovery
with adaptive caching, fuzzy search with algorithm selection based on codebase size, and content
search with fallback strategies. The system employs batch file operations for parallel reading and
multi-level caching to optimize repeated operations.

A distinctive feature is the specialized Codebase Investigator Agent: a sub-agent with autonomous
exploration capabilities using dedicated search tools. This architectural pattern delegates complex
investigation tasks to focused agents with constrained operation windows, maintaining investigation
state through scratchpads and generating structured reports. Unlike semantic search systems relying
on embeddings, the architecture depends on traditional file operations optimized for speed, with
intelligence emerging from LLM-driven orchestration.

The full trace is in Appendix C.

4.4. Cursor

Cursor employs a hybrid retrieval strategy combining semantic and lexical search tools [40]. The
Cursor documentation lists distinct search capabilities: a "Codebase" tool for semantic searches against
pre-indexed embeddings, and a "Grep" tool for exact keyword matching [40]. Background indexing
creates embeddings for each file in the workspace, with indexing time ranging from 1-15 minutes
depending on project size [40].

Search technique. The retrieval strategy combines both search approaches within a single query
execution: (1) semantic search using the Codebase tool queries pre-indexed embeddings to find concep-
tually related code, (2) lexical search using the Grep tool targets exact keyword patterns for precision
matching, (3) file reading and directory listing tools retrieve specific content from identified files. The
observed trace demonstrates this hybrid approach: initial semantic search identified candidate files,
followed by targeted grep patterns to locate specific implementations, culminating in selective file
reads.

The dual-search architecture enables queries without requiring users to specify regex patterns or
file paths explicitly. However, search tool invocations are visible only at a high level (e.g., "Searched
’...b connector interface’", "Grepped 3 greps"). The specific embedding matches, similarity scores, or
grep patterns used are not exposed in the interface. This provides partial transparency: users observe
that search operations occurred and which tool categories were used, but not the detailed retrieval
logic or ranking heuristics.

Architecture characteristics. Cursor integrates search capabilities within an IDE environment,
operating through background processes and agent-managed tools [40]. The Codebase tool requires
prior indexing of workspace files (excluding those in .gitignore or .cursorignore), while Grep operates
directly on file contents without preprocessing requirements [40]. Search tools execute automatically
based on agent decisions. Users issue natural language queries and observe aggregated tool usage
("Found 16 results"), but do not control which search method is applied or when the agent switches
between semantic and lexical approaches.

The agent also includes tools for file operations (Read File, List Directory), command execution
(Terminal), and web search [40], providing broader context gathering capabilities beyond code retrieval.
The architecture prioritizes automatic tool selection and aggregated result presentation, trading fine-
grained search control for natural language query interfaces and simplified developer interaction.

The full trace is in Appendix D.

4.5. Amp

Amp employs a specialized sub-agent architecture for code search, delegating exploration tasks
to dedicated search agents rather than executing searches directly. The approach demonstrates explicit
task decomposition with clear boundaries between coordination and execution.

Search technique. The system uses a two-layer delegation model: the main agent identifies
retrieval needs and invokes specialized search sub-agents with isolated contexts and tool access. Search
sub-agents perform systematic exploration using lexical pattern matching, file discovery through glob
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patterns, and targeted file reading. The sub-agent compiles findings into structured results before
returning control, enabling clear separation between search execution and result synthesis.

The execution demonstrates progressive refinement within the sub-agent context: broad initial
searches narrowing to targeted pattern matching and validation. Notable characteristics include
transparent tool execution through detailed logging, context isolation preventing pollution between
agents, and structured result marshaling for information transfer.

Architecture characteristics. Amp [39] implements multi-agent orchestration where specialized
sub-agents handle specific task domains. The architecture comprises a main agent for task decomposi-
tion and result synthesis, and specialized sub-agents with dedicated tool access for code exploration.
Unlike monolithic agents where a single LLM performs all operations, Amp uses explicit delegation
with independent context windows per sub-agent.

The architecture enables parallel sub-agent execution for independent tasks and supports modu-
larity through focused prompting: search agents receive retrieval-specific instructions independent
of main task prompts. The system allows user-guided context through configuration files specifying
relevant code locations, providing hybrid automatic-manual curation. Context isolation prevents
contamination but requires careful engineering for effective information transfer between agents.

The full trace is in Appendix E.

4.6. Cline

Cline employs a hybrid search strategy combining three complementary retrieval mechanisms:
content-based pattern matching, fuzzy file path matching, and AST-based code structure extraction.
The approach demonstrates multi-granularity search across different code representation levels.

Search technique. The agent orchestrates three distinct search layers through a plan-and-act
loop: (1) ripgrep-based content search for keyword pattern matching across file contents, (2) directory-
scoped structural exploration using recursive traversal to build spatial codebase awareness, and (3)
AST-based definition extraction for syntactic code structure discovery. The strategy demonstrates pro-
gressive refinement from broad patterns to specific signatures, with cross-referencing across multiple
implementations to understand common patterns.

Notable characteristics include systematic directory traversal for spatial reasoning, multi-
implementation cross-referencing to infer architectural patterns, and transparent tool execution with
visible search operations. The combination of content search (keyword matching), file name search
(fuzzy matching), and structure search (AST parsing) enables exploration across different granularity
levels: from broad keyword matches to precise symbol definitions.

Architecture characteristics. Cline [36] implements a three-tier retrieval system: regex-based
content search using ripgrep with result limits and output caps, fuzzy file/folder search combining file
listing with fzf [43] matching and custom scoring, and AST-based definition extraction using Tree-sitter
parsers for multi-language syntactic analysis. The architecture supports multi-workspace operation,
permission control through ignore files, and performance optimization via result limiting and parallel
searching.

The system prioritizes context-aware search by weighting currently open files in results and
implements multi-language support through Tree-sitter grammars. Unlike semantic indexing, the
architecture relies on lexical search and syntactic parsing optimized for speed, with intelligence
emerging from LLM-driven orchestration rather than vector embeddings.

The full trace is in Appendix F.

4.7. Aider

Aider employs graph-based AST-driven retrieval fundamentally distinct from both embedding-
based semantic search and iterative lexical exploration. The approach combines static analysis tech-
niques inspired by Language Server Protocol with graph topology algorithms to identify relevant code
through structural relationships.
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Search technique. The retrieval strategy operates through graph-based ranking rather than
pattern matching or vector similarity: (1) repo-map construction using Tree-sitter AST parsing to
extract definitions and references across the codebase, (2) dependency graph building where nodes
represent files and edges represent reference relationships, and (3) PageRank [44] ranking to identify
high-relevance files based on graph centrality. The repo-map provides symbol-level visibility: function
signatures and dependency edges without requiring full file content, enabling precise file identification
from initial queries.

Notable characteristics include dependency-aware discovery through graph traversal, interface
completeness analysis via AST-based structural comparison, and cached parsing to avoid redundant
processing. The approach achieves symbol-level visibility within constrained token budgets through
binary search optimization, maximizing information density of repository maps. Unlike semantic
approaches relying on conceptual similarity, relevance derives from structural relationships (function
calls, imports, inheritance). Unlike iterative lexical search, the graph-based approach provides upfront
ranking of file relevance.

Architecture characteristics. Aider [37] implements a four-layer system combining Tree-sitter AST
parsing for definition/reference extraction across 40+ languages, NetworkX [45] graph analysis with
PageRank [44] ranking using personalization factors for context weighting, token-optimized repository
maps using binary search to fit symbols within configurable budgets, and disk-based caching with
modification-time tracking to avoid redundant parsing.

The architecture emphasizes graph topology over semantics: relevance determined by structural
relationships (function calls, imports, inheritance) rather than embedding similarity. The approach
is lightweight and deterministic, requiring no GPU, embedding models, or vector databases, while
operating offline without external dependencies. Unlike RAG-based systems chunking code into
isolated fragments, the graph-based approach preserves architectural context through explicit depen-
dency edges. The repo-map provides symbol-level visibility with function signatures and dependency
relationships without full file retrieval, enabling efficient file identification within constrained token
budgets.

The full trace is in Appendix G.

4.8. Resource Consumption Analysis

Context window utilization varies significantly across agents, reflecting different trade-offs
between retrieval comprehensiveness and efficiency. Table 2 presents token consumption and context
window utilization for each agent during the code search task.

Table 2. Token Usage and Context Window Utilization by Agent.

Agent Tokens Consumed Context Window Utilization %

Aider 8,500–13,000 200,000 4.3–6.5%
Amp 19,000 968,000 2.0%
Cursor 29,400 200,000 14.7%
Cline 35,000 200,000 17.5%
Codex CLI 39,540 (190,964 with cached) 272,000 14.5% (70.2% actual)
Gemini CLI 102,280 200,000 51.1%
Claude Code (Standard) 108,000 200,000 54.0%
Claude Code (LSP) 117,000 200,000 58.5%

Token consumption varies by more than an order of magnitude (8,500 to 117,000), yet all agents
successfully completed the task. This variation reveals distinct efficiency profiles across retrieval
strategies:

Highly efficient agents (2–7% utilization): Aider and Amp demonstrate minimal context con-
sumption through graph-based ranking and sub-agent delegation, respectively. Aider’s repo-map
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approach provides symbol-level visibility without full file retrieval, while Amp’s isolated sub-agent
contexts prevent main agent contamination.

Moderate efficiency agents (15–18% utilization): Cursor and Cline occupy a middle range
through hybrid semantic-lexical indexing (Cursor) and hybrid three-tier search (Cline). These ap-
proaches balance retrieval comprehensiveness with context constraints.

Higher-consumption agents (51–70% utilization): Gemini, Claude Code, and Codex demonstrate
substantial context usage, though for different reasons. Gemini’s batch file operations consume 51.1%
of context. Claude Code’s consumption (54–58.5%) stems primarily from architectural choices: tool
inventory overhead ( 12.7% of context consumed by system and MCP tool definitions before any
operations), whole-file reading rather than snippet-based retrieval, and autocompact buffer allocation
(22.5% of context reserved for conversation history). Codex CLI’s actual consumption reaches 70.2%
when cached tokens are included, though its interface misleadingly displays only 14.5% based on
non-cached tokens—a significant discrepancy that can cause users to underestimate context pressure
by nearly 5x.

The LSP-augmented Claude Code variant (58.5%) consumed 8.5% more context than the standard
approach (54%) without measurable performance improvement, suggesting IDE-oriented tools add
overhead for autonomous agents. Notably, Amp’s 968k context window substantially larger than other
agents, enabled 2% utilization despite absolute token consumption similar to Cline.

These patterns suggest significant optimization opportunities exist in current retrieval approaches.
Graph-based ranking (Aider) and architectural isolation (Amp) achieve task completion with minimal
context, while iterative lexical search may over-provision context through redundant exploration.

4.9. Comparison of Code Search Tools in Coding Agents

Different coding agents employ varying approaches to code retrieval and search. Table 3 provides
a comprehensive comparison of popular coding agents, analyzing their primary retrieval mechanisms,
architectural paradigms, context provisioning methods, key strengths, and noted limitations.
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Table 3. Comparison of Code Search and Retrieval Mechanisms in Coding Agents.

Agent Primary
Retrieval
Mechanism

Architectural
Paradigm

Context Provi-
sioning

Key Strengths Noted Limita-
tions

Claude
Code

Agentic
Search (grep)

CLI-Native Explicit tools +
Bash

Predictability and
simplicity

High token
consumption,
potential for ir-
relevant context

Gemini CLI Agentic
Search (grep)

CLI-Native Explicit tools +
Bash

Parallel tool calls,
fastest retrieval

High token con-
sumption

Codex CLI Shell Com-
mand Orches-
tration

CLI-Native Explicit tools +
Bash

Progressive search,
directory scoped
pattern search

Highest token
consumption,
incorrect token
usage reporting

Cursor Hybrid
Semantic-
Lexical (Em-
beddings +
Grep)

IDE-
Integrated
(Hybrid CLI)

Background in-
dexing and Ex-
plicit tools

Whole-codebase
awareness, fast
interactive queries

Partial trans-
parency (ag-
gregated tool
summaries),
initial indexing
overhead

Cline Hybrid Agen-
tic Search
(ripgrep + fzf
+ Tree-sitter
AST)

IDE-
Integrated
(VS Code)

Explicit (plan-
and-act loop)

Three-tier retrieval
(lexical + fuzzy
+ AST), multi-
language AST
parsing, efficient
context usage (35k
tokens)

Limited AST
depth (top-level
only), 300 result
limit, relies on
effective agent
planning

Aider CLI Graph-Based
AST Ranking
(Tree-sitter +
PageRank)

CLI-Native Repo-map with
symbol-level
visibility

Graph topology
preserves archi-
tecture, PageRank
relevance scoring,
deterministic of-
fline operation,
40+ languages,
lowest token usage
(8.5k-13k), symbol
signatures visible
without full file
retrieval

Indexing over-
head

Amp Multi-Agent
Orchestration
(Sub-Agent
Delegation)

CLI-Native Hybrid (explicit
sub-agent +
agentic search)

Modularity, paral-
lel sub-agent exe-
cution, specialized
prompting, efficient
token usage ( 19k,
2% of 968k context)

Context isola-
tion complexity,
requires careful
result marshal-
ing

This comparison reveals several key insights about retrieval strategy evolution in coding agents.
CLI-native agents like Claude Code, Gemini CLI, and Codex CLI prioritize transparency and pre-
dictability through explicit search commands: developers can understand and verify. These approaches
mirror traditional developer workflows but vary significantly in resource efficiency (see Table 2).

IDE-integrated solutions split into two paradigms: Cursor leverages hybrid semantic-lexical
indexing to provide whole-codebase awareness with moderate efficiency (14.7% context utilization),
though this comes at the cost of partial transparency (aggregated tool summaries) and initial setup
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overhead. Cline employs a three-tier retrieval approach (ripgrep lexical search, fzf fuzzy matching,
Tree-sitter AST parsing) with a plan-and-act loop, achieving high transparency and similar efficiency
(17.5% utilization) while maintaining structural code awareness.

Aider represents a distinct paradigm combining graph-based static analysis with symbol-level
repository maps. The approach achieves the highest efficiency (4.3–6.5% utilization) while preserving
architectural context through dependency graphs. This LSP-inspired approach eschews semantic
embeddings entirely, relying instead on structural relationships to rank file relevance. The repo-map
provides function signatures and dependency edges without requiring full file retrieval, enabling
precise file identification from initial queries. The trade-off is no semantic understanding: files with
conceptual similarity but no explicit dependencies won’t be connected. However, it gains deterministic,
explainable retrieval that works offline without GPU or embedding model dependencies.

Multi-agent architectures like Amp balance modularity and specialization through sub-agent
delegation while maintaining exceptional efficiency (2% of its larger 968k context window).

The choice of retrieval mechanism significantly impacts agent effectiveness, with each approach
optimized for different use cases and developer preferences. As the field evolves and models get
adapted to use different retrieval strategies, we observe trends toward hybrid systems that can
dynamically adapt retrieval strategies based on task and context requirements.

4.10. Code Search Transparency Comparison

Transparency in code search refers to user visibility into retrieval operations: which queries are
executed, which files are retrieved, and how long this information remains observable. This dimension
affects agent debuggability, user trust, and the ability to verify retrieval correctness.

Table 4 compares search transparency across agents. Query Visibility indicates whether users can
observe the actual search patterns (grep regex, file globs, or semantic queries). File Visibility indicates
whether retrieved file lists are exposed. Duration describes information persistence.

Table 4. Search Operation Transparency Comparison.

Agent Query Visibility File Visibility Duration

Claude Code Full Full Persistent
Gemini CLI Full Full Persistent
Amp Full Full Transient
Cline Partial Full Persistent
Codex CLI Partial Full Persistent
Cursor Partial Partial Persistent
Aider None Partial Persistent

CLI-native agentic agents (Claude Code, Gemini CLI) provide full transparency: all search
patterns, regex details, and file retrievals are persistently visible in execution traces. Codex CLI and
Cline show partial query visibility: Codex displays search terms and scope ("Search GitHubConnector",
"Search mock in integrationsvc") without underlying fuzzy-search scoring details; Cline exposes lexical
search patterns (ripgrep invocations) but hides semantic retrieval and AST traversal details. Cursor
provides partial transparency across both dimensions: semantic searches show truncated queries
("Searched ’...b connector interface’"), grep patterns are fully visible ("Grepped ’GitHubConnector’"),
but auto-retrieved files from semantic indexing remain unlisted. Aider provides minimal transparency,
displaying only file addition notifications ("Added file.go to chat") without exposing search operations
or query details. Amp uniquely combines full transparency during sub-agent execution with transient
persistence: detailed search operations are visible while the sub-agent operates but removed from the
main thread upon completion, typically visible for under one second.

These transparency patterns reflect architectural trade-offs between verifiability and interface
simplicity. Full transparency enables debugging and trust calibration but increases information density,
while abstracted summaries reduce cognitive load at the cost of observability into retrieval logic.
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5. Results
This section presents findings from the exploratory study, addressing the three research questions

through comparative analysis of agent performance on the code retrieval task. All seven agents
(Claude Code, Codex CLI, Gemini CLI, Cursor, Amp, Cline, and Aider) successfully completed the
task of locating GitHub connector interface implementations in the InfraGPT repository, enabling
comparison of their retrieval approaches, resource consumption, and observable behaviors.

5.1. RQ1: Semantic Search vs. Lexical Search

The study compared one hybrid semantic-lexical agent (Cursor) against six lexical/agentic search
agents (Claude Code, Codex CLI, Gemini CLI, Cline, Amp, and Aider).

Token consumption. Cursor consumed approximately 29,400 tokens (14.7% of its 200k context
window). Lexical search agents showed varied consumption: Claude Code (108k–117k tokens, 54–59%),
Codex CLI (39.5k tokens, 34.4k input + 5k output with 151k cached), Gemini CLI (102k tokens with
52.1% cache hit rate), Cline (35k tokens, 17.5%), Amp (19k tokens, 2% of 968k window), and Aider
(8.5–13k tokens). Note that prompt caching reduces computation cost and API charges but does not
reduce context window consumption: cached tokens still occupy context space. Aider’s graph-based
AST ranking achieved the lowest token consumption, while Cursor’s hybrid approach fell in the
middle range.

Task completion. All agents successfully identified the GitHub connector interface and its
implementations, indicating that both semantic and lexical approaches are viable for this task type.
Task completion alone did not differentiate the approaches.

Retrieval transparency. Lexical search agents provided visible tool execution traces (grep patterns,
file reads, search refinements), enabling users to observe and verify retrieval logic. Cursor’s hybrid
retrieval provided partial transparency: tool invocations were visible at an aggregated level ("Searched",
"Grepped 3 greps") with result counts, but specific search patterns, embedding matches, file rankings,
and relevance scores remained hidden.

Contextual breadth. Cursor demonstrated whole-codebase awareness through semantic indexing,
cross-referencing the GitHub connector with other implementations (GCP, Slack) and presenting archi-
tectural context without explicit searches. Lexical agents achieved similar architectural understanding
through iterative exploration and cross-file reading, but required multiple explicit tool invocations.

Setup requirements. Cursor required background indexing before query execution, introducing
initial overhead. Lexical agents operated without pre-indexing, enabling immediate task execution at
the cost of potentially higher query-time token consumption.

No clear performance advantage emerged for semantic search in this single-task exploratory
study. Both approaches successfully completed the retrieval task, with trade-offs in transparency, token
efficiency, setup overhead, and contextual awareness. Lexical search provided greater interpretability
and required no indexing infrastructure, while semantic search enabled broader context gathering
with less explicit tool orchestration.

5.2. RQ2: Human Developer Tools for Agents

Claude Code’s LSP integration experiment provided direct evidence on whether agents benefit
from IDE-level developer tools.

LSP integration attempt. Claude Code attempted to use Language Server Protocol tools via
MCP integration, invoking lsp-definition for "githubConnector" symbol lookup, lsp-references
for "Connector" interface usage, and lsp-hover for type information. These LSP queries largely failed:
"githubConnector not found" (symbol resolution failed for unexported types), "No references found
for symbol: Connector" (workspace-wide searches returned empty), and hover information required
precise file coordinates that were difficult to specify without prior knowledge.

Fallback to lexical search. Despite LSP tool availability, the agent achieved task completion
primarily through traditional grep-based searches and file reading. The LSP-augmented run consumed
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117k tokens (59% context usage) with 8 searches and 8 file reads, compared to 108k tokens (54%) with 7
searches and 6 file reads for the standard grep-only approach. LSP integration added tool invocations
and token consumption without measurable retrieval improvement.

Aider’s adapted approach. Aider demonstrated an alternative strategy: rather than using LSP
directly, it employed LSP-inspired techniques adapted for autonomous workflows. The agent used
Tree-sitter AST parsing with NetworkX PageRank to build dependency graphs, achieving symbol-level
visibility and architectural awareness without interactive LSP queries. This approach consumed
8.5–13k tokens (the lowest among all agents) and successfully identified interface implementations,
missing methods, and dependency relationships through static analysis.

The findings suggest that LSP, designed for interactive human workflows with IDE integration,
does not translate directly to autonomous agent performance. Symbol resolution failures, empty
reference searches, and coordinate-precision requirements created friction for agent-driven exploration.
However, the underlying principles of LSP (structural code understanding, dependency tracking,
symbol resolution) proved valuable when adapted for autonomous operation (as demonstrated by
Aider’s graph-based AST approach). Human-centric tooling requires adaptation for agent contexts
rather than direct adoption.

5.3. RQ3: Specialized Retrieval Sub-Agents

Two agents employed multi-agent architectures with specialized retrieval delegation (Amp and
Gemini CLI), enabling comparison with single-agent approaches.

Token efficiency. Amp’s sub-agent architecture consumed approximately 19k tokens (2% of its
968k context window), achieving the second-lowest token consumption among all agents. Gemini CLI
consumed 102k tokens with 52.1% cache hit rate. Single-agent approaches showed varied efficiency:
Aider (8.5–13k tokens, lowest overall), Cline (35k tokens), Codex (39.5k tokens displayed, but 191k
actual including cached tokens—70.2% of 272k context), and Claude Code (108–117k tokens).

Architectural characteristics. Amp employed explicit sub-agent delegation: the main agent
identified the need for code search and spawned a dedicated search sub-agent with isolated context
and tool access. The sub-agent performed grep searches, glob patterns, and file reads independently,
then returned structured results to the main agent. Gemini CLI used a "Codebase Investigator Agent"
with autonomous exploration capabilities, investigation scratchpads, and structured XML reports
(maximum 15 turns, 5-minute timeout). Both approaches successfully completed the task.

Coordination overhead. Multi-agent architectures required explicit result marshaling: context
from the search sub-agent needed to be serialized and transferred to the main agent’s context. This cre-
ated communication overhead absent in single-agent systems where retrieval results were immediately
available in the same context window.

Modularity benefits. Sub-agent delegation enabled specialized prompting: the search sub-agent
received retrieval-specific instructions independent of the main agent’s task-focused prompt. This
separation theoretically enables focused optimization of retrieval quality, though performance benefits
were not conclusively demonstrated in this single-task study.

The findings indicate that specialized retrieval sub-agents can achieve competitive or superior
token efficiency compared to single-agent approaches (Amp’s 19k tokens vs. Cline’s 35k tokens vs.
Claude Code’s 108–117k tokens), though Aider’s single-agent graph-based approach achieved the
lowest consumption (8.5–13k tokens). Sub-agent architectures introduce modularity and specialization
benefits but require careful context management to avoid coordination overhead. Both architectural
paradigms successfully completed the task, suggesting the choice depends on factors beyond raw
retrieval performance, such as extensibility requirements, prompt engineering flexibility, and context
window constraints.

5.4. Cross-Cutting Observations

Several patterns emerged across all agents regardless of retrieval approach:
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Iterative refinement. All agents employed progressive search narrowing: broad initial queries
(e.g., "github") followed by targeted refinement (e.g., "interface.*github", "type.*Connector"). This
pattern appeared in lexical search (grep), semantic search (Cursor’s natural language queries), and
graph-based search (Aider’s PageRank-driven file ranking).

Multi-file context synthesis. The task required understanding distributed code across multiple
files (interface definition in domain/connector.go, implementation in connectors/github/github.go,
configuration in config.go). All agents successfully synthesized this cross-file context, whether through
explicit file reading sequences (lexical agents), background indexing (Cursor), or repo-map symbol
visibility (Aider).

Tool diversity. Agents employed complementary tools beyond primary retrieval: directory
exploration (ls, recursive file viewing), file type filtering (glob patterns), and content extraction (file
reading, AST parsing). Effective retrieval combined multiple tool types rather than relying on a single
search mechanism.

Resource consumption variability. Token consumption varied by an order of magnitude (8.5k
to 117k tokens), yet all agents completed the task successfully. This suggests significant opportunity
for optimization: current retrieval approaches may over-provision context or employ inefficient
search strategies. Aider’s graph-based approach and Amp’s sub-agent delegation demonstrate that
substantial token reductions are achievable without sacrificing task completion.

These findings establish baseline performance for diverse retrieval approaches on a controlled
task, revealing trade-offs in transparency, efficiency, setup requirements, and architectural complexity.
However, the exploratory nature of this single-task study limits generalizability: findings may not
extend to different task types, repository characteristics, or complexity levels. Future quantitative
evaluation with controlled variables and diverse tasks is required to establish causal relationships and
definitive performance rankings.

6. Limitations
This exploratory study examines retrieval behavior on a single refactoring task within a sin-

gle repository (InfraGPT, a 50k-line Go/TypeScript/Python monorepo). Several factors limit the
generalizability of findings:

Task diversity. The controlled task of locating interface implementations through multi-file code
search represents one category of software engineering work. Findings may not extend to other task
types such as debugging runtime failures, implementing new features requiring architectural changes,
refactoring legacy code with poor documentation, or synthesizing cross-cutting concerns (security,
performance, error handling). Different task categories may favor different retrieval mechanisms.

Repository characteristics. InfraGPT’s moderate size (338 files, 50k lines of code), clear architec-
tural boundaries, and well-structured module organization may not reflect challenges in larger-scale
repositories (100k+ lines), legacy codebases with inconsistent naming conventions, polyglot reposito-
ries with language-specific tooling requirements, or codebases with poor documentation and minimal
comments. Retrieval effectiveness likely varies with repository complexity and code quality.

Limited evaluation scope. The study examines seven agents on a single task instance. Statistical
significance cannot be established, variability across multiple task instances is not measured, and
long-tail failure modes (rare edge cases, non-deterministic errors) are not captured. Token consumption
and tool usage patterns observed may not be representative of typical performance.

Confounding variables. Agents differ in multiple dimensions simultaneously, including under-
lying models (Sonnet-4.5, GPT-5, Gemini-2.5-pro), prompt engineering and system instructions, tool
implementations and APIs, context window sizes (200k to 968k tokens), and architectural paradigms
(CLI-native vs. IDE-integrated). Observed performance differences cannot be attributed to retrieval
mechanisms alone: model reasoning capabilities, prompt quality, and architectural choices confound
results.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 October 2025 doi:10.20944/preprints202510.0924.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0924.v1
http://creativecommons.org/licenses/by/4.0/


21 of 40

Qualitative analysis subjectivity. Interpretation of agent behavior, classification of retrieval
strategies, and assessment of context relevance rely on manual observation and subjective judgment.
Different researchers may categorize tool usage patterns differently or draw alternative conclusions
from execution traces.

These limitations are inherent to this exploratory methodology. The study’s value lies in surfacing
hypotheses, identifying trade-offs, and informing the design of future rigorous quantitative evaluation
with diverse tasks, controlled variables, and statistical analysis. Findings should be interpreted as
preliminary insights rather than definitive evidence of retrieval mechanism superiority.

7. Challenges
The code retrieval problem presents fundamental challenges that extend beyond simple search.

These challenges span technical, architectural, and evaluation dimensions, each contributing to the
complexity of building effective coding agents.

7.1. Retrieval Quality and Context Management

Noise injection and context overflow. Imprecise retrieval introduces irrelevant code that degrades
agent performance. Conversely, overly broad retrieval generates contexts that exceed model capacity,
forcing truncation or overwhelming the model’s reasoning capabilities. This tension between recall
and precision becomes particularly acute in large codebases where relevant code may be scattered
across multiple files.

Cross-language variability. Retrieval effectiveness varies significantly across programming
languages due to differences in syntax, idioms, and structural patterns. Semantic search approaches
trained primarily on Python or JavaScript may perform poorly on languages with different paradigms
(e.g., functional languages like Haskell, or systems languages like Rust), requiring language-specific
tuning or universal representations that remain elusive.

7.2. Evaluation and Success Criteria

Defining successful retrieval. Unlike traditional information retrieval where relevance can be
assessed independently, code retrieval success is task-dependent. Retrieval that includes sufficient
context for one task may be insufficient for another. The lack of standardized metrics for "sufficient
retrieval" complicates both evaluation and comparison across systems. Furthermore, success often
depends on downstream task completion rather than retrieval precision, making isolated retrieval
evaluation problematic.

7.3. Architectural and Distributed Challenges

Remote and external context. Modern software development increasingly relies on remote
resources: API documentation hosted externally, dependency specifications in package registries,
configuration stored in separate repositories. Agents must decide when to retrieve remote context,
manage authentication and rate limits, and integrate information from heterogeneous sources. This
extends the retrieval problem beyond local code to a distributed information gathering challenge.

Microservices and inter-service dependencies. Understanding service interactions, API contracts,
and cross-service data flow requires retrieving and synthesizing information across multiple codebases.
Traditional single-repository retrieval approaches fail to capture these architectural dependencies,
leaving agents unable to reason about system-wide implications of code changes.

7.4. System and Tool Heterogeneity

Underlying model differences. Coding agents employ diverse underlying language models
(GPT-4, Claude, Gemini, etc.), each with different context windows, reasoning capabilities, and training
data. These differences affect what constitutes "adequate" retrieval: longer context windows may
tolerate noisier retrieval, while stronger reasoning models may extract value from less precisely
targeted context.
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Tool availability and interaction patterns. Agents vary in their retrieval tooling (grep, AST search,
semantic search, file tree navigation) and interaction paradigms (fully autonomous vs. user-guided).
This heterogeneity makes it difficult to attribute performance differences to retrieval quality versus
tool design or model capability. Moreover, user interaction patterns in semi-autonomous systems
introduce non-determinism that complicates controlled evaluation.

8. Opportunities & Future Work
This exploratory study reveals critical trade-offs in how coding agents approach code retrieval,

but its single-task, single-repository design and confounding variables prevent definitive conclusions
about which retrieval mechanisms work best under what conditions. The extreme variation in token
efficiency (8.5k to 117k tokens) despite universal task success, combined with the diversity of retrieval
paradigms observed, underscores the need for systematic empirical evaluation.

To address this gap, we are developing a comprehensive benchmark framework for evaluating
code retrieval in coding agents.8 This framework will enable controlled comparison of retrieval
approaches by isolating retrieval mechanisms from confounding factors such as underlying models,
prompt engineering, and agent architectures. The benchmark will span diverse tasks (refactoring,
bug fixing, feature addition, test generation), multiple repositories of varying sizes and languages,
and standardized evaluation metrics including token consumption, retrieval precision and recall, task
success rates, and execution traces.

The goal is not to identify a universally optimal retrieval approach, but rather to establish
empirical foundations for understanding when and why specific retrieval mechanisms lexical search,
semantic indexing, LSP integration, graph-based ranking, or agentic exploration excel for particular
task types, codebase characteristics, and resource constraints. By providing reproducible evaluation
infrastructure and baseline results, this benchmark will enable both researchers exploring novel
retrieval techniques and practitioners making architectural decisions to ground their work in rigorous
comparative evidence. As coding agents transition from research prototypes to production systems,
such empirical grounding becomes essential for building reliable, efficient, and transparent tools.

9. Conclusion
This exploratory study examined how seven state-of-the-art coding agents approach code retrieval

a critical capability that determines their ability to understand existing codebases and generate contex-
tually appropriate solutions. Through qualitative analysis of agent behavior on a controlled refactoring
task, we identified distinct retrieval paradigms and characterized their trade-offs in transparency,
token efficiency, and architectural complexity.

Our findings challenge several prevailing assumptions in the field. First, semantic search demon-
strated no clear performance advantages over lexical approaches all agents successfully completed
the task regardless of their retrieval mechanism, with token consumption varying by an order of
magnitude (8.5k to 117k tokens). Graph-based AST ranking (Aider) achieved the lowest resource
consumption, suggesting that structural code analysis adapted for autonomous operation may outper-
form both traditional semantic indexing and agentic lexical search. Second, LSP tools designed for
human developers failed to translate directly to agent performance; Claude Code’s LSP-augmented run
consumed more tokens without measurable benefits, though LSP-inspired principles proved valuable
when reimplemented for agent contexts. Third, multi-agent architectures showed promise (AMP
achieved second-lowest token consumption) but introduced coordination overhead, with no definitive
evidence that specialized retrieval sub-agents consistently outperform well-designed single-agent
systems.

The extreme variation in token efficiency despite universal task success reveals significant op-
timization opportunities in current agent designs. Agents employed common behavioral patterns

8 The benchmark framework and evaluation infrastructure are available at https://github.com/73ai/code-retrieval-eval
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progressive search refinement, directory-scoped exploration, and cross-referencing yet differed dra-
matically in resource consumption. This suggests that retrieval mechanism choice and implementation
quality matter substantially, but in ways not captured by task completion alone. The transparency-
efficiency trade-off emerged as a central design tension: explicit tool-based approaches (grep, glob)
provide interpretable reasoning traces at the cost of token consumption, while semantic indexing and
graph-based methods operate more efficiently but sacrifice visibility into decision-making processes.

These findings must be interpreted within the study’s acknowledged limitations. Our single-task,
single-repository design cannot establish statistical significance or address the diversity of real-world
software engineering work. Multiple confounding variables underlying models, prompt engineering,
tool implementations, and architectural paradigms prevent causal attribution of performance differ-
ences to retrieval mechanisms alone. The exploratory qualitative methodology, while appropriate for
hypothesis generation, requires validation through rigorous quantitative evaluation across diverse
tasks, repositories, and controlled experimental conditions.

Nevertheless, this work establishes a foundation for future research by surfacing key trade-offs,
identifying promising approaches, and demonstrating the feasibility of systematic agent comparison.
The insights inform practical architectural decisions when to invest in semantic indexing infrastructure,
how to balance transparency with efficiency, and whether multi-agent decomposition justifies its coor-
dination overhead. More broadly, the study highlights an urgent need for comprehensive benchmarks
that isolate retrieval effectiveness from model capability, enable reproducible comparison, and track
progress as both foundation models and retrieval techniques evolve.

As coding agents transition from research prototypes to production tools, understanding retrieval
trade-offs becomes critical for both developers building these systems and practitioners deploying them.
Our exploratory analysis suggests that the question is not whether semantic search, LSP integration, or
multi-agent architectures are universally superior, but rather when and why specific approaches excel
for particular tasks, codebases, and use cases. Answering these questions rigorously will require the
community-driven benchmark infrastructure, controlled experimentation, and theoretical foundations
outlined in our future work agenda efforts we hope this study catalyzes.

Appendix A. Claude Code: Complete Execution Traces
This appendix presents the complete interaction traces from Claude Code’s execution of the

GitHub connector interface search task. Two runs are documented: (1) standard agentic search
using grep and glob patterns, and (2) LSP-augmented search attempting to leverage Language Server
Protocol integration.

Appendix A.1. Standard Agentic Search

User: Find github connector interface implementations

Assistant: I’ll search for GitHub connector interface implementations in the codebase.

Search(pattern: "github.*connector|connector.*github")
Found 14 files

Search(pattern: "interface.*github|github.*interface")
Found 3 files

Search(pattern: "class.*GitHub|GitHub.*Client")
Found 0 files

Search(pattern: "**/*github*.py")
Found 3 files

Search(pattern: "**/*github*.go")
Found 3 files

Search(pattern: "**/*connector*.py")
Found 3 files
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Search(pattern: "**/*connector*.go")
Found 1 file

Read(services/backend/internal/integrationsvc/
domain/connector.go)
Read 32 lines

Read(services/backend/internal/integrationsvc/
connectors/github/github.go)
Read 706 lines

Read(services/backend/integration.go)
Read 139 lines

Read(services/backend/internal/integrationsvc/
connectors/github/webhook.go)
Read 620 lines

Read(services/backend/internal/integrationsvc/
connectors/github/models.go)
Read 47 lines

Read(services/backend/internal/integrationsvc/
connectors/github/config.go)
Read 58 lines

Search(pattern: "type.*Event|EventType",
path: "services/backend/internal/integrationsvc/connectors/github",
output_mode: "content")
Found 17 lines

Read(services/backend/internal/integrationsvc/
connectors/github/events.go)
Read 103 lines

Assistant: Found the GitHub connector interface implementations.

Figure: Claude Code standard agentic search trace

Context usage metrics:
• Total context: 108k/200k tokens (54%)
• System prompt: 3.0k tokens (1.5%)
• System tools: 11.5k tokens (5.8%)
• MCP tools: 17.6k tokens (8.8%)
• Tool overhead (system + MCP): 29.1k tokens (14.6%) consumed before retrieval operations
• Messages: 30.2k tokens (15.1%)
• Autocompact buffer: 45k tokens (22.5%) reserved for conversation history
• Free space: 47k tokens (23.7%)
• Search operations: 7
• File reads: 6 (whole-file reads, not snippets)
• Total lines examined: 1,605

Appendix A.2. LSP-Augmented Search

User: Find github connector interface implementations and use lsp mcp

Assistant: I’ll help you find GitHub connector interface implementations using the LSP MCP tools.

Search(pattern: "**/*github*")
Found 46 files

Search(pattern: "**/*connector*")
Found 17 files

Read(services/backend/internal/integrationsvc/
connectors/github/github.go)
Read 706 lines
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Read(services/backend/internal/integrationsvc/
domain/connector.go)
Read 32 lines

lsp-definition(symbolName: "githubConnector")
githubConnector not found

lsp-references(symbolName: "Connector")
No references found for symbol: Connector

Search(pattern: "**/connectors/**/*.go")
Found 10 files

Search(pattern: "type.*Connector.*struct", type: "go", output_mode: "content")
Found 3 lines

Read(services/backend/internal/integrationsvc/
connectors/slack/slack.go)
Read 282 lines

Read(services/backend/internal/integrationsvc/
connectors/gcp/gcp.go)
Read 243 lines

Search(pattern: "func New",
path: "services/backend/internal/integrationsvc/connectors",
output_mode: "content")
Found 0 lines

Read(services/backend/internal/integrationsvc/
connectors/github/config.go)
Read 58 lines

Read(services/backend/internal/integrationsvc/
connectors/slack/config.go)
Read 53 lines

lsp-hover(filePath: ".../github.go", line: 26, column: 6)
type githubConnector struct { ... }

Search(pattern: "func \(g \*githubConnector\)",
path: "services/backend/internal/integrationsvc/connectors/github",
output_mode: "content")
Found 37 lines

Figure: Claude Code LSP-augmented search trace

Context usage metrics:
• Total context: 117k/200k tokens (59%)
• System prompt: 3.0k tokens (1.5%)
• System tools: 11.5k tokens (5.8%)
• MCP tools: 17.6k tokens (8.8%)
• Messages: 39.8k tokens (19.9%)
• Free space: 38k tokens (18.9%)
• Search operations: 8 (5 grep/glob, 3 LSP)
• File reads: 8
• Total lines examined: 1,422
• LSP success rate: 1/3 (hover succeeded, definition and references failed)

Appendix A.3. Comparative Analysis

The two runs reveal key insights about Claude Code’s retrieval strategy:
Tool selection dynamics: When LSP tools were available, the agent attempted to use them

for symbol-level navigation but quickly adapted when they failed, reverting to reliable grep-based
searches. This demonstrates robust fallback behavior rather than rigid dependence on any single
retrieval mechanism.
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Token efficiency: The agentic tool search achieved task completion with 9k fewer tokens (108k
vs 117k), suggesting that simple lexical tools may be more efficient than attempting sophisticated
IDE-level operations for autonomous agents.

LSP limitations for agents: LSP’s failure to resolve unexported symbols and workspace-wide
references highlights a fundamental mismatch: LSP was designed for human developers working
interactively in a fully-indexed IDE, not for agents exploring codebases programmatically without
prior workspace initialization.

Search pattern sophistication: Both runs demonstrated advanced regex pattern construction
("github.*connector|connector.*github", "type.*Connector.*struct") and strategic scoping (directory-
level path filters), indicating that lexical search remains highly effective when guided by strong
reasoning models.

These traces validate the design choice of CLI-native coding agents to prioritize simple, transpar-
ent lexical tools over complex semantic indexing or IDE integration, at least for repository exploration
tasks.

Appendix B. Codex CLI: Complete Execution Trace
This appendix presents the complete interaction trace from the Codex CLI agent’s execution of

the GitHub connector interface search task. The trace documents all search operations, file reads, and
intermediate results in chronological order.

User: Find github connector interface implementations

Explored:

List ls
Result: Listed root directory structure

Search GitHub in *.py
Result: Searched for GitHub in Python files

Search github
Result: Broad search for "github" across codebase

List connectors
Result: Listed connectors directory

List github
Result: Listed GitHub connector directory

Read github.go
Result: Read GitHub connector implementation

Search GitHubConnector
Result: Searched for GitHubConnector type

Search ClaimInstallation
Result: Searched for ClaimInstallation method

Search mock in integrationsvc
Result: Searched for mock implementations in integration service

Read github.go
Result: Re-read GitHub connector for validation

Search NewGit in connectors
Result: Searched for constructor patterns

Read config.go, connector.go, github.go
Result: Read configuration, interface definition, and implementation files

Answer:

GitHubConnector is declared in services/backend/internal/integrationsvc/connectors/github/github.go:22,
and the only concrete implementation is the githubConnector struct in the same file (services/backend/internal/
integrationsvc/connectors/github/github.go:26) whose ClaimInstallation method satisfies the interface at services/
backend/internal/integrationsvc/connectors/github/github.go:307. The Config.New() factory wires it up by return-
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ing this struct as a domain.Connector (services/backend/internal/integrationsvc/connectors/github/config.go:25).
No other implementations are present in the codebase.

Figure: Complete Codex CLI execution trace showing iterative search refinement

Appendix B.1. Trace Analysis

The execution trace reveals several key patterns in Codex’s retrieval strategy:
Multi-modal search progression: The agent combined directory listing (List), pattern matching

(Search), and full file reading (Read) in a coordinated sequence. This demonstrates flexible tool use
rather than reliance on a single retrieval primitive.

Scope narrowing: Searches progressively narrowed from repository-wide keyword matches to
directory-scoped pattern searches (in integrationsvc), reflecting growing architectural understand-
ing.

Hypothesis-driven exploration: The search for NewGitHubRepositoryRepository and related
patterns suggests the agent formed hypotheses about naming conventions and tested them systemati-
cally.

Context accumulation: The 151,424 cached tokens indicate that previously read files remained
accessible throughout the session, enabling the agent to cross-reference findings without redundant
reads. However, the context window percentage calculation excludes cached tokens, creating a
misleading display: while the interface shows "97% context remaining," the actual remaining space is
approximately 32% when cached tokens (which still occupy context) are included. This discrepancy
means users may approach context limits significantly faster than the displayed percentage suggests.

This detailed trace provides transparency into the agent’s decision-making process and enables
reproducibility of the experimental results.

Appendix B.2. Metrics

• Total tokens: 39,540 (input=36,874 + output=2,666)
• Cached tokens: 151,424 (still occupy context space, reduce computation cost)
• Reasoning tokens: 1,600 (excluded from context window for future turns)
• Real context consumption: 190,964 tokens (including cached)
• Displayed context remaining: 97% (based on non-cached tokens only)
• Actual context remaining: 32% (when cached tokens included)
• Search operations: 11 (List, Search, Read commands)
• File reads: 4 (github.go read twice, plus config.go, connector.go)

Appendix C. Gemini CLI: Complete Execution Trace
This appendix presents the complete interaction trace from the Gemini CLI agent’s execution of

the GitHub connector interface search task. The trace documents all tool invocations, file operations,
and reasoning steps in chronological order.

User: Find github connector interface implementations

Assistant: I will start by searching for files with "github" in their name to locate any relevant files.

Tool Invocations:

FindFiles ’**/*github*’
Result: Found 6 matching file(s)
- services/backend/internal/integrationsvc/connectors/github/github.go
- services/backend/internal/integrationsvc/connectors/github/config.go
- services/backend/internal/integrationsvc/connectors/github/webhook.go
- services/backend/internal/integrationsvc/connectors/github/models.go
- services/backend/internal/integrationsvc/connectors/github/events.go
- services/backend/db/migrations/github_*.sql
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Reasoning: The file services/backend/internal/integrationsvc/connectors/github/github.go appears to be the GitHub
connector implementation. The other files seem database-related. I’ll now search for a connector.go file, which I expect will
define the connector interface in a parent directory.

FindFiles ’**/connector.go’
Result: Found 1 matching file(s)
- services/backend/internal/integrationsvc/domain/connector.go

Reasoning: Found a potential connector interface at
services/backend/internal/integrationsvc/domain/connector.go. I’ll read its contents to verify it’s an interface and check its
methods, then confirm its implementation in
services/backend/internal/integrationsvc/connectors/github/github.go.

ReadManyFiles
Targets: services/backend/internal/integrationsvc/connectors/github/github.go,
services/backend/internal/integrationsvc/domain/connector.go
Result: Successfully read and concatenated content from 2 file(s)
- services/backend/internal/integrationsvc/connectors/github/github.go (706 lines)
- services/backend/internal/integrationsvc/domain/connector.go (32 lines)

Reasoning: Okay, I’ve confirmed githubConnector implements the Connector interface by comparing the methods in
github.go and connector.go. Now, to find other implementations, I’ll search the codebase for usages of domain.Connector.

SearchText ’domain.Connector’
Result: Found 6 match(es)
- services/backend/internal/integrationsvc/connectors/github/config.go
- services/backend/internal/integrationsvc/connectors/slack/config.go
- services/backend/internal/integrationsvc/connectors/gcp/config.go
- services/backend/internal/integrationsvc/domain/connector.go
- services/backend/internal/integrationsvc/config.go
- services/backend/internal/integrationsvc/service.go

Reasoning: The search results reveal a connector map in config.go and a connector-using service in service.go. I’ve
identified two domain.Connector implementations: the GitHub connector I already knew about, and a new Slack connector,
both with New() functions. I’ll now examine the Slack connector’s config.go and slack.go to confirm its implementation.

ReadManyFiles
Targets: services/backend/internal/integrationsvc/connectors/slack/config.go,
services/backend/internal/integrationsvc/connectors/slack/slack.go
Result: Successfully read and concatenated content from 2 file(s)
- services/backend/internal/integrationsvc/connectors/slack/config.go (53 lines)
- services/backend/internal/integrationsvc/connectors/slack/slack.go (282 lines)

Reasoning: The Slack connector files confirm my findings: config.go’s New() returns a domain.Connector, and slack.go
defines the slackConnector struct implementing the domain.Connector interface. Thus, I’ve located two Connector interface
implementations: the GitHub connector in github.go and the Slack connector in slack.go. The domain.Connector search
confirms these are the only two. I’m ready to present my answer.

ReadFile services/backend/internal/integrationsvc/
domain/connector.go
Result: Successfully read 32 lines

Final Answer:

The Connector interface, defined in services/backend/internal/integrationsvc/domain/connector.go, has two imple-
mentations:

• githubConnector in services/backend/internal/integrationsvc/connectors/github/github.go
• slackConnector in services/backend/internal/integrationsvc/connectors/slack/slack.go

I’ve found all implementations.

Figure: Complete Gemini CLI execution trace showing multi-layered search strategy

Appendix C.1. Trace Analysis

The execution trace reveals several distinctive patterns in Gemini CLI’s retrieval strategy that
differentiate it from other agents:

Batch-oriented file operations: Unlike other agents that read files individually, Gemini CLI
consistently used ReadManyFiles to process multiple related files in parallel. This approach reduced
tool call overhead and enabled faster context gathering through Promise.allSettled-based parallelism.
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Explicit reasoning transparency: The agent’s thought process was visible through intermediate
reasoning steps, showing how it formed hypotheses ("I expect the connector interface to be defined in
a parent directory") and validated them systematically. This transparency aids debugging and user
trust.

Strategic scope expansion: The search progression followed a deliberate pattern: (1) narrow
file pattern match ("**/*github*"), (2) interface discovery ("**/connector.go"), (3) implementation
verification (read files), (4) comprehensive discovery (search for "domain.Connector" usage). This
reflects a mental model of "find specific, then expand to comprehensive."

High cache utilization: The 52.1% cache hit rate demonstrates effective reuse of previously
processed context, enabled by Gemini CLI’s multi-level caching architecture (file system crawl results,
search result prefix caching, fingerprinting-based invalidation).

Minimal tool invocations: With only 8 total tool calls (3 FindFiles, 2 SearchText, 3 ReadMany-
Files/ReadFile), Gemini CLI achieved task completion with fewer operations than other agents,
suggesting efficient planning and batching.

Sub-agent autonomy: While not explicitly invoked in this trace, Gemini CLI’s architecture
supports delegating complex searches to a specialized Codebase Investigator sub-agent with its own
scratchpad and tool access, enabling deeper exploration without cluttering the main agent’s context.

These patterns validate Gemini CLI’s design philosophy: optimize for speed through aggressive
caching and parallelism, provide transparency through visible reasoning, and delegate complex
exploration to specialized sub-agents when needed.

Appendix C.2. Metrics

• Total tokens: 102,280 (input=99,973 + output=763 + thoughts=1,544)
• Cached tokens: 53,304 (52.1% cache hit rate)
• FindFiles operations: 3
• SearchText operations: 2
• ReadManyFiles/ReadFile operations: 3
• Total unique files examined: 4
• Total lines read: 1,105 (706+32+53+282+32)
• API execution time: 48.2s
• Wall clock time: 1h 32m 44s

Appendix D. Cursor: Complete Execution Trace
This appendix presents the complete interaction trace from the Cursor agent’s execution of the

GitHub connector interface search task. Cursor employs a hybrid approach using both semantic search
(via Codebase tool) and lexical search (via Grep tool), with tool invocations visible at a summary level
rather than detailed operation traces.

User: Find github connector interface implementations

Cursor Agent: I’ll help you find GitHub connector interface implementations in the InfraGPT codebase. Let me search
for these implementations across the project.

Tool Invocations: •Searched "...b connector interface implementations"

Found 16 results

Let me also search for more specific patterns related to GitHub connector implementations:

•Grepped 3 greps
Grepped "GitHubConnector" in .
Grepped "githubConnector" in .
Grepped "Connector.*interface" in .

Now let me check the domain connector interface to understand the full interface structure:

•Read ...end/internal/integrationsvc/domain/connector.go
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Let me also check if there are any other connector implementations to get a complete picture:

•Listed ...ices/backend/internal/integrationsvc/connectors 10 files, 3 directories

Let me check the other connector implementations to provide a complete overview:

•Read 2 files
Read ...d/internal/integrationsvc/connectors/gcp/gcp.go
Read ...ternal/integrationsvc/connectors/slack/slack.go

Analysis and Results:

Based on my analysis of the InfraGPT codebase, I found the GitHub connector interface implementations. Here’s a
comprehensive overview:

GitHub Connector Interface Implementations

The InfraGPT platform implements a connector-based architecture for integrating with external services. Here are the
GitHub connector interface implementations I found:

1. Core Interface Definition

File: services/backend/internal/integrationsvc/domain/connector.go
The base Connector interface defines the contract that all connectors must implement:

type Connector interface {
// Authorization methods
InitiateAuthorization(organizationID string, userID string)

(backend.IntegrationAuthorizationIntent, error)
ParseState(state string)

(organizationID uuid.UUID, userID uuid.UUID, err error)
CompleteAuthorization(authData backend.AuthorizationData)

(backend.Credentials, error)
ValidateCredentials(creds backend.Credentials) error
RefreshCredentials(creds backend.Credentials)

(backend.Credentials, error)
RevokeCredentials(creds backend.Credentials) error

// Webhook methods
ConfigureWebhooks(integrationID string, creds backend.Credentials) error
ValidateWebhookSignature(payload []byte, signature string,

secret string) error

// Event subscription method
Subscribe(ctx context.Context,

handler func(ctx context.Context, event any) error) error

// Event processing method
ProcessEvent(ctx context.Context, event any) error

// Sync method
Sync(ctx context.Context, integration backend.Integration,

params map[string]string) error
}

2. GitHub-Specific Interface

File: services/backend/internal/integrationsvc/connectors/github/github.go
The GitHub connector defines its own interface that extends the base connector:

type GitHubConnector interface {
ClaimInstallation(ctx context.Context, installationID string,

organizationID, userID uuid.UUID) (*backend.Integration, error)
}

3. GitHub Connector Implementation

File: services/backend/internal/integrationsvc/connectors/github/github.go
The main implementation (githubConnector struct) implements both interfaces with comprehensive GitHub App functionality:
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Key Features:
• GitHub App Installation Flow: Handles OAuth2-style installation authorization
• JWT Token Management: Generates and manages GitHub App JWT tokens
• Repository Synchronization: Syncs repositories and permissions
• Webhook Processing: Handles GitHub webhook events
• Installation Management: Claims and manages GitHub App installations

Key Methods:
• InitiateAuthorization() - Creates GitHub App installation URL
• CompleteAuthorization() - Completes the installation flow
• ClaimInstallation() - Claims a GitHub App installation
• Sync() - Synchronizes repositories and permissions
• ProcessEvent() - Processes GitHub webhook events
• ValidateWebhookSignature() - Validates GitHub webhook signatures

4. Supporting Files

Configuration: services/backend/internal/integrationsvc/connectors/github/config.go
• Defines the Config struct with GitHub App settings
• Implements the New() factory method

Models: services/backend/internal/integrationsvc/connectors/github/models.go
• Defines GitHubRepository struct and repository interface
• Handles repository data persistence

Webhooks: services/backend/internal/integrationsvc/connectors/github/webhook.go
• Implements webhook event processing
• Handles installation events, repository events, and permission updates

Events: services/backend/internal/integrationsvc/connectors/github/events.go
• Defines GitHub-specific event types and structures

5. Other Connector Implementations

For comparison, the platform also includes:
• GCP Connector (services/backend/internal/integrationsvc/connectors/gcp/gcp.go) - Service account-based authenti-

cation
• Slack Connector (services/backend/internal/integrationsvc/connectors/slack/slack.go) - OAuth2-based authentication

6. Integration Service

File: services/backend/internal/integrationsvc/service.go
The integration service manages all connectors and routes GitHub webhook events to the appropriate connector:

func (s *service) handleConnectorEvent(ctx context.Context,
event any) error {
switch e := event.(type) {
case github.WebhookEvent:

if connector, exists := s.connectors[backend.ConnectorTypeGithub];
exists {
return connector.ProcessEvent(ctx, e)

}
return fmt.Errorf("GitHub connector not found")

// ... other cases
}

}

The GitHub connector implementation is comprehensive and handles the full GitHub App lifecycle, including installa-
tion, repository synchronization, webhook processing, and permission management.

Figure: Cursor hybrid search trace showing aggregated tool summaries with comprehensive results

Appendix D.1. Trace Analysis

The Cursor execution trace demonstrates a hybrid retrieval approach combining semantic and
lexical search tools:

Multi-tool search strategy: The agent executed a sequence of complementary search operations:
(1) initial semantic search ("Searched ’...b connector interface implementations’") yielding 16 results
from the pre-indexed codebase, (2) follow-up lexical searches using three grep patterns (GitHubCon-
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nector, githubConnector, Connector.*interface) for precise pattern matching, (3) targeted file reads
based on search results, and (4) directory listing to discover related connector implementations. This
demonstrates automatic tool orchestration; the agent selected appropriate search tools without user
specification.

Aggregated tool visibility: Tool invocations are displayed at a summary level rather than detailed
operation traces. Users observe that searches occurred ("Searched", "Grepped 3 greps") and result
counts ("Found 16 results"), but cannot inspect the specific files matched by semantic search, the exact
grep patterns used, or the similarity ranking algorithms. This provides awareness of search activity
without exposing retrieval internals, offering a middle ground between full transparency (explicit tool
traces) and complete opacity (no visible operations).

Natural language query interface: The user prompt "Find github connector interface implemen-
tations" requires no regex patterns, glob syntax, or file path hints. The agent interprets intent and
automatically selects search tools: semantic search for conceptual matching followed by lexical search
for precision without requiring users to specify search methodology.

Context efficiency through selective reading: At 14.7% context utilization (approximately 29,400
tokens), Cursor consumed significantly less context than iterative search agents (Claude Code: 54%,
Codex: 34%, Gemini: 51%). The trace shows selective file access, reading only connector.go, gcp.go,
and slack.go rather than sequential exploration of search results. This suggests the semantic search
phase identified relevant files efficiently, enabling targeted reads rather than exploratory scanning.

Indexing prerequisites: The semantic Codebase tool requires prior workspace indexing (1-15
minutes depending on project size), while the Grep tool operates directly on file contents. The trace
does not expose the indexing phase, but this represents a one-time setup cost enabling faster query-time
semantic retrieval. Files matching .gitignore or .cursorignore patterns are excluded from indexing,
potentially affecting semantic search coverage.

Architectural discovery through hybrid search: The agent identified related implementations
(GCP, Slack connectors) and supporting files (config.go, models.go, webhook.go, events.go) not
explicitly mentioned in the query. The combination of semantic search (finding conceptually related
code) and directory listing (discovering file structures) enabled broader architectural awareness beyond
keyword-based retrieval.

These characteristics position Cursor’s hybrid approach as balancing automation (tool selec-
tion, natural language queries) with partial observability (aggregated tool summaries), prioritizing
developer experience over fine-grained search control.

Appendix D.2. Metrics

• Context utilization: 14.7% (approximately 29,400 tokens out of 200,000)
• Tool operations: 1 semantic search, 3 grep operations, 3 file reads, 1 directory listing
• Tool visibility: Aggregated summaries (operation types and counts visible, specific patterns and

results hidden)
• Response comprehensiveness: High (identified core interface, implementations, supporting files,

and cross-references)
• Retrieval transparency: Partial (tool categories visible, retrieval logic and ranking hidden)
• Query complexity: Low (natural language, no regex/glob syntax required)

Appendix E. Amp: Complete Execution Trace
This appendix presents the complete interaction trace from Amp’s execution of the GitHub

connector interface search task. AMP employs a multi-agent architecture where a main agent delegates
code exploration to specialized sub-agents.

User: Find github connector interface implementations

AMP Main Agent: I’ll search for GitHub connector interface implementations in the codebase.
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[Main agent analyzes task and decides to delegate to search sub-agent]

Sub-Agent Delegation:
Invoke: Search Sub-Agent
Task: "Find GitHub connector interface implementations - look for classes that
implement a GitHub connector interface, GitHub API integration code,
or GitHub service implementations"

Search Sub-Agent Execution:

Thinking I’ll search for GitHub connector interface implementations in the codebase.

Grep class.*GitHub.*Connector
Searching for: class.*GitHub.*Connector

Grep GitHubConnector
Searching for: GitHubConnector

Grep GitHubConnector
Searching for: GitHubConnector
Found matches in multiple files

Grep interface.*GitHub
Searching for: interface.*GitHub
Found: interface definitions

Grep class.*GitHub..*implements
Searching for: class.*GitHub..*implements
No matches found

Grep type.*Connector.*interface
Searching for: type.*Connector.*interface
Found: domain.Connector interface

Read services/backend/internal/integrationsvc/domain/connector.go
Reading file to examine interface definition

Read services/backend/internal/integrationsvc/connectors/github
Reading GitHub connector directory

Read services/backend/internal/integrationsvc/connectors/github/github.go
Reading GitHub connector implementation
Read 706 lines

Search Sub-Agent Report:

The GitHub connector is implemented in
services/backend/internal/integrationsvc/connectors/github/github.go
with the githubConnector struct implementing the domain.Connector
interface defined in domain/connector.go.

Key findings:
• Interface definition: services/backend/internal/integrationsvc/domain/connector.go
• Implementation: services/backend/internal/integrationsvc/connectors/github/github.go
• Implementation struct: githubConnector
• Supporting files: config.go, models.go, webhook.go, events.go

[Sub-agent returns results to main agent]

AMP Main Agent: Found the GitHub connector interface implementations.

Figure: Amp sub-agent delegation trace

Token usage metrics:
• Context window: 968k tokens
• Total tokens consumed: 19k (2% of context window)
• Sub-agent context: Isolated with 20k token budget
• Main agent overhead: Task delegation and result synthesis
• Search operations: Multiple grep patterns with progressive refinement
• File reads: 3+ files (connector.go, github.go, supporting files)
• Execution model: Sequential (main agent waits for sub-agent completion)
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Appendix E.1. Sub-Agent Architecture Analysis

The Amp execution trace reveals distinctive characteristics of multi-agent code search:
Explicit task delegation: Unlike monolithic agents where all operations occur in a single context,

AMP explicitly delegates code search to a specialized sub-agent. This delegation is visible in the trace,
showing clear boundaries between main agent reasoning and sub-agent execution.

Isolated sub-agent context: The search sub-agent operates with its own context window within
the 968k total context, using approximately 2% ( 19k tokens) for this task, preventing context pollution
in the main agent. However, this isolation requires marshaling results through structured output,
which may lose nuanced information compared to direct file access.

Transparent tool execution: Like Claude Code and Gemini CLI, AMP’s search sub-agent uses
explicit grep and read operations. Users can observe every search pattern and file read, enabling
verification and debugging of retrieval logic.

Progressive refinement strategy: The sub-agent demonstrates iterative pattern refinement: start-
ing with broad "class.*GitHub.*Connector" searches, narrowing to specific "type.*Connector.*interface"
patterns, and finally reading implementation files. This mirrors human developer exploration.

Appendix F. Cline: Complete Execution Trace
This appendix presents the complete interaction trace from Cline’s execution of the GitHub

connector interface search task. Cline employs a plan-and-act loop with three-tier retrieval combining
ripgrep content search, fzf fuzzy file matching, and Tree-sitter AST parsing.

User: Find github connector interface implementations

Cline: I’ll help you find GitHub connector interface implementations. Let me create a plan.

Plan (6 tasks):
• Search for GitHub connector references
• Examine connector interface definitions
• Find GitHub connector implementations
• Find other connector implementations
• Find connector factory/initialization
• Document findings

Task 1: Search for GitHub connector references (in_progress)

Thinking: Let me search for how the GitHub connector is instantiated and if there are other connectors.

search_files(pattern: "func New", directory: "/services/backend/internal/integrationsvc/connectors")
Searching for constructor functions

Task 1: Completed

Task 2: Examine connector interface definitions (in_progress)

Thinking: Let me look for the constructor or initialization function for the GitHub connector, and also explore what
other files are in the connectors directory.

view_directory_recursively("/services/backend/internal/integrationsvc/connectors")
Viewing directory structure
Found 3 connector implementations: github, slack, gcp

Task 2: Completed

Task 3: Find GitHub connector implementations (in_progress)

Thinking: Now I can see there are three connector implementations: 1. github 2. slack 3. gcp. Let me read the other
connector files to see if they implement the Connector interface too.

read_file("/services/backend/internal/integrationsvc/connectors/slack/slack.go")
Reading Slack connector implementation

Task 3: Completed

Task 4: Find other connector implementations (in_progress)

Thinking: The user wants to find GitHub connector interface implementations. Let me look at the GCP connector as
well to complete the picture of all connector implementations.
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read_file("/services/backend/internal/integrationsvc/connectors/gcp/gcp.go")
Reading GCP connector implementation

Task 4: Completed

Task 5: Find connector factory/initialization (in_progress)

Thinking: Now I have a good understanding of the GitHub connector interface implementations. Let me search for
how these connectors are registered or created to provide a complete picture.

search_files(pattern: "NewGitHubConnector|NewSlackConnector|NewGCPConnector|NewConnector",
directory: "/services/backend/internal/integrationsvc")
Searching for connector factory functions

search_files(pattern: "func.*(.*) domain.Connector",
directory: "/services/backend/internal/integrationsvc")
Found factory methods returning domain.Connector

read_file("/services/backend/internal/integrationsvc/connectors/github/config.go")
Reading GitHub connector config

read_file("/services/backend/internal/integrationsvc/connectors/slack/config.go")
Reading Slack connector config

read_file("/services/backend/internal/integrationsvc/connectors/gcp/config.go")
Reading GCP connector config

Task 5: Completed

Task 6: Document findings (in_progress)

Thinking: Now I have gathered comprehensive information about the GitHub connector interface implementations.
Let me document my findings:

Findings Summary:

1. Interface Definition: domain.Connector interface in
services/backend/internal/integrationsvc/domain/connector.go

2. GitHub Connector Implementation:
• Location: services/backend/internal/integrationsvc/connectors/github/github.go
• Struct: githubConnector
• Factory: Config.New() method in config.go

3. Slack Connector Implementation:
• Location: services/backend/internal/integrationsvc/connectors/slack/slack.go
• Struct: slackConnector
• Factory: Config.New() method in config.go

4. GCP Connector Implementation:
• Location: services/backend/internal/integrationsvc/connectors/gcp/gcp.go
• Struct: Connector
• Factory: Config.New() method in config.go

All three implement the domain.Connector interface with its methods:
• InitiateAuthorization, ParseState, CompleteAuthorization
• ValidateCredentials, RefreshCredentials, RevokeCredentials
• ConfigureWebhooks, ValidateWebhookSignature
• Subscribe, ProcessEvent, Sync

Additionally, the GitHub connector has a specific interface GitHubConnector with a ClaimInstallation method.

Task 6: Completed

All tasks have been completed!

Figure: Cline plan-and-act loop execution trace

Token usage metrics:
• Total context: 35k/200k tokens (17.5%)
• Model: Sonnet 4.5
• API cost: $0.0104 (first request)
• Task completion: 6/6 automated steps
• Search operations: 4 (ripgrep-based content search)
• File reads: 6 files examined
• Directory traversal: 1 recursive view
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• Execution model: Sequential plan-and-act loop with visible checkpoints

Appendix F.1. Plan-and-Act Loop Analysis

The Cline execution trace reveals distinctive characteristics of plan-driven agentic search:
Explicit task planning: Unlike reactive agents that explore iteratively, Cline begins by generating a

structured 6-task plan. This plan is visible to the user, providing transparency into the agent’s intended
exploration strategy before execution begins. Tasks progress through pending to in_progress to
completed states.

Systematic directory traversal: Cline’s use of view_directory_recursively demonstrates spa-
tial reasoning, understanding codebase structure through hierarchical exploration rather than blind
pattern matching. This approach discovered all three connector implementations (github, slack, gcp)
in a single operation.

Three-tier retrieval architecture: The trace shows Cline leveraging multiple retrieval mechanisms:
• Ripgrep content search: Pattern matching with "func New" and "func.*(.*) domain.Connector"
• Directory traversal: Recursive viewing to understand codebase structure
• File reading: Targeted reads of implementation and config files

Progressive pattern refinement: The search strategy evolved from broad patterns ("func New")
to specific signatures ("func.*(.*) domain.Connector"), demonstrating iterative refinement guided by
intermediate findings.

Cross-referencing implementations: Rather than stopping at the GitHub connector, Cline sys-
tematically examined all three connector implementations (GitHub, Slack, GCP) to understand the
common interface pattern. This architectural awareness mirrors human developer reasoning.

Efficient context management: At only 35k tokens (17.5% of context window), Cline achieved
comprehensive results with minimal token consumption. This efficiency comes from:
• Targeted file reads (6 files) instead of bulk ingestion
• Directory traversal for structural awareness without reading all files
• Pattern-based searches returning only relevant matches

Visible checkpoints: Each task transition is logged with explicit "Completed" status, enabling
users to track progress and verify completion. The trace includes "Thinking" steps showing the agent’s
reasoning before tool invocations.

Comprehensive synthesis: The final task (Document findings) produces a structured summary
with interface definitions, implementation locations, factory methods, and interface method lists,
demonstrating the agent’s ability to synthesize findings into actionable documentation.

Appendix G. Aider: Complete Execution Trace
This appendix presents the complete interaction trace from Aider’s execution of the GitHub

connector interface search task. Aider employs a graph-based, AST-driven retrieval system combining
Tree-sitter parsing with NetworkX PageRank to identify relevant code through dependency analysis.

Aider v0.86.1
Main model: claude-sonnet-4-5 with whole edit format, infinite output
Weak model: anthropic/claude-3-5-haiku-20241022
Git repo: .git with 415 files
Repo-map: using 4096 tokens, auto refresh

> Find github connector interface implementations

Initial repo scan can be slow in larger repos, but occurs only once.
Scanning repo: 100%|================| 415/415 [00:00<00:00, 240.86it/s]

Aider (repo-map analysis): Based on your request to find GitHub connector interface implementations, I need to
examine the actual implementation files. The most likely files that would need changes are:

services/backend/internal/integrationsvc/connectors/github/github.go - This appears to be the main GitHub
connector implementation that likely implements the Connector interface defined in services/backend/internal/
integrationsvc/domain/connector.go
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Please add services/backend/internal/integrationsvc/connectors/github/github.go to the chat so I can ana-
lyze the complete implementation and identify which interface methods are implemented.

Tokens: 8.5k sent, 133 received. Cost: $0.03 message, $0.03 session.

[Files added to chat:]
services/backend/internal/integrationsvc/connectors/github/github.go
services/backend/internal/integrationsvc/domain/connector.go

Aider (AST analysis): I’ve analyzed the files. The githubConnector struct in
services/backend/internal/integrationsvc/connectors/github/github.go
implements the Connector interface from
services/backend/internal/integrationsvc/domain/connector.go.
Looking at the code, I can identify the following interface implementations:
Here’s what I found:
Implemented Methods:

1. InitiateAuthorization - Creates GitHub App installation URL
2. ParseState - Parses state parameter to extract organization and user IDs
3. CompleteAuthorization - Completes the authorization flow
4. ValidateCredentials - Validates installation credentials
5. RefreshCredentials - Refreshes installation access token
6. RevokeCredentials - Revokes credentials (currently just logs)
7. ConfigureWebhooks - Configures webhook URL
8. Sync - Syncs repositories and permissions

Missing Methods (Not Implemented):
1. ValidateWebhookSignature - Required by the interface but not implemented
2. Subscribe - Required by the interface but not implemented
3. ProcessEvent - Required by the interface but not implemented

Do you want me to implement the missing methods (ValidateWebhookSignature, Subscribe, and ProcessEvent) for the
GitHub connector?

Tokens: 13k sent, 305 received. Cost: $0.04 message, $0.07 session.

Figure: Aider graph-based retrieval trace

Appendix G.1. Graph-Based Retrieval Analysis

The Aider execution trace reveals distinctive characteristics of graph-based, LSP-inspired code
retrieval:

Repository scanning with Tree-sitter: Aider begins by scanning all 415 files at 240.86 files/second,
extracting AST definitions and references using language-specific Tree-sitter grammars. This initial
scan populates a NetworkX MultiDiGraph where files are nodes and symbol references create weighted
edges.

PageRank-based file ranking: Rather than semantic similarity, Aider uses PageRank (the al-
gorithm that powered early Google Search) to rank files by importance. Files with many incoming
references (dependencies) score higher, while personalization factors boost:
• Files already in chat context (50x multiplier)
• Files explicitly mentioned by user query (10x)
• Identifiers matching query terms (10x)
• Well-named identifiers with snake_case/camelCase (10x)

Token-optimized repository map: Aider uses binary search to fit the most important symbols
within 4096 tokens (configurable with –map-tokens). Only function signatures and class declarations
are shown, not full implementations, maximizing information density. This enables file identification
from the repo-map alone without retrieving full file content.

Repo-map based file identification: The initial query "Find github connector interface implemen-
tations" was answered using only the 4096-token repository map, which contained sufficient symbol-
level information (function names, struct definitions, interface relationships) to identify github.go as
the primary implementation file. This demonstrates how PageRank-ranked symbols enable precise
retrieval without semantic embeddings.
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Proactive dependency discovery: After analyzing github.go, Aider identified that it implements
the domain.Connector interface and retrieved domain/connector.go to enable completeness checking.
This dependency-aware retrieval relies on AST analysis of struct types and interface references, purely
structural relationships rather than semantic understanding.

Interface completeness validation: Aider goes beyond the task requirements by identifying
three missing method implementations (Subscribe, ProcessEvent, ValidateWebhookSignature). This
architectural awareness comes from comparing the githubConnector struct methods against the
domain.Connector interface definition, a purely syntactic operation enabled by AST parsing.

Transparent cost reporting: Each interaction displays exact token counts (8.5k to 13k) and API
costs ($0.03 to $0.04 to $0.07), providing visibility into computational expenses and retrieval efficiency.

Appendix G.2. Tree-sitter AST Parsing Architecture

Aider’s retrieval system relies on Tree-sitter, a parser generator tool that builds concrete syntax
trees for source code. Unlike regex-based pattern matching, Tree-sitter provides language-aware
parsing through:

Language-specific query files: Aider uses *.scm files (Scheme-like query language) to extract
definitions and references for 40+ languages. Example queries:
• name.definition.function - Function definitions
• name.definition.class - Class definitions
• name.reference.call - Function calls
• name.reference.type - Type references

Fallback to Pygments lexer: For languages where Tree-sitter only provides definitions (not
references), Aider falls back to Pygments lexer [46] to extract basic token information.

SQLite-backed caching: Parsed tags are cached in a SQLite database (diskcache) with cache keys
including file modification time (mtime). This ensures:
• First scan takes time (415 files at 240.86 files/second)
• Subsequent scans are instant (cache hit)
• Modified files are automatically re-parsed based on mtime
• Cache invalidation on Tree-sitter version upgrades
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