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Abstract 

Hypoxia, or lack of adequate oxygen saturation, activates a vast repertoire of vascular  responses to 

increase cell survival and proliferation, driven primarily by activation of oxygen-sensing hypoxia 

inducible factors (HIFs). Key hypoxia mediator HIF-1 is capable of driving vascular restructuring 

in response to low oxygen tension and oxygen-independent signaling pathways, and thus serves as 

a promising therapeutic modulator for ischemic cardiovascular diseases such as peripheral artery 

disease and coronary artery disease. In this review, we discuss oxygen-dependent and oxygen-

independent mechanisms of HIF-1 regulation, the HIF protein family’s role in vessel 

collateralization, and translational efforts seeking to exploit HIF-1’s key role in hypoxia signaling 

for the purpose of therapeutic development of clinical treatments for ischemic cardiovascular disease. 

Keywords: HIF-1; oxygen; hypoxia; ischemia; cardiovascular diseases  

 

1. Introduction 

Oxygen homeostasis, the balance of oxygen supply and demand, is crucial to the normal 

functioning of molecular and cellular processes involved in cell metabolism, differentiation, 

proliferation, and survival, as well as organ function and human survival [1,2]. Humans have 

adapted cellular and biochemical responses to combat hypoxic insult key to many disease processes. 

The most well studied are the hypoxia-inducible factors (HIFs) [3]. HIF-1 was identified in 1992 as a 

transcription factor that upregulates erythropoietin (EPO) production in response to hypoxia by 

binding to the EPO enhancer and increases its transcription [4–6]. EPO is a glycoprotein hormone 

produced by specialized interstitial peritubular fibroblast-like cells of the kidney which acts to 

promote erythropoiesis in the bone marrow in response to hypoxia and/or anemia, thereby increasing 

circulating red blood cell (RBC) number and increasing oxygen delivery to tissues [7].  

Further studies have since uncovered the hypoxic regulatory mechanisms of HIF-1α and the 

more than 100 genes that it regulates [8]. HIF-1α plays a crucial role in promoting the formation of 

new blood vessels (angiogenesis) through upregulation of growth factors such as VEGF [9–11], 

facilitating an energy-conserving metabolic switch from aerobic to anaerobic metabolism via the 
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upregulation of key glycolytic enzymes, increase in glucose transporters in the cell membrane, and 

repression of mitochondrial TCA cycle enzymes – all serving to effectively increase the intracellular 

oxygen tension [12,13]. Additionally, HIF-1α induction has been shown to increase EPO production 

to increase circulating RBC volume [7], dampen the inflammatory response via extracellular 

adenosine signaling [14], and promote cell proliferation and survival in hypoxic environments, 

including solid tumors [15,16]. 

These HIF-driven cellular mechanisms are central to tissue survival in the response to ischemic 

events, such as the growth of new collateral blood vessels in occluded cerebral, peripheral, and 

coronary arteries to restore local circulation [17]. The purpose of this review paper is to explore the 

biological regulation of the HIF proteins, the role of HIFs and its downstream targets in promoting 

angiogenesis, and the clinical implications of therapeutic angiogenesis in ischemic coronary and 

peripheral artery disease. 

2. Oxygen-Dependent Regulation of the HIFs 

HIF-1α and HIF-2α are heterodimeric transcription factors belonging to the basic helix-loop-

helix PER-ARNT-SIM family (bHLH-PAS) consisting of an oxygen-sensitive alpha subunit and a 

constitutively expressed beta subunit (HIF-1β) [18]. The beta subunit is also known as the aryl 

hydrocarbon receptor nuclear translocator (ARNT) and is encoded by ARNT1 and ARNT2 [19]. HIF-

1β forms a heterodimer with both HIF-1α and HIF-2α [18]. Three isoforms of the alpha subunit exist 

and are termed HIF-1α, HIF-2α, and HIF-3α, respectively [20]. The alpha subunits of HIF-1 and HIF-

2 exhibit stable transcription; however, they are tightly regulated at the protein level [21]. The alpha 

subunit contains an oxygen-dependent degradation (ODD) domain which contains two specific 

proline residues which are subject to hydroxylation by several prolyl hydroxylase domain proteins 

(PHD1-4) under normal oxygen tension, or “normoxic” conditions [22]. Hydroxylation of the HIF 

alpha subunits occurs in the cytoplasm of the cell, which subsequently leads to the binding of the 

alpha subunit to Von Hippel Lindau protein (VHL) [23]. A complex formed with the E3 ubiquitin 

ligase results in polyubiquitylation and subsequent degradation via the ubiquitin-proteasome 

pathway [24]. The half-life of the HIF alpha subunits in the cytosol is approximately 5 minutes, 

resulting in rapid protein degradation in normoxic conditions [25] (Left, Figure 1). 
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Figure 1. Oxygen-dependent and oxygen-independent regulation of HIF-1α signaling. Under normoxic 

conditions (left), HIF-1α undergoes prolyl hydroxylation by prolyl hydroxylase domain proteins (PHDs) and 

factor inhibiting HIF (FIH), enabling recognition by von Hippel–Lindau protein (pVHL). This leads to 

ubiquitination and proteasomal degradation of HIF-1α, preventing transcriptional activity. Under hypoxic 

conditions (right), reduced hydroxylation stabilizes HIF-1α, allowing its accumulation and dimerization with 

HIF-1β in the nucleus. The HIF-1α/β complex, together with transcriptional co-activators CBP and p300, binds 

to hypoxia response elements (HREs) to activate transcription of target genes. In addition to this oxygen-

dependent regulation, HIF-1α can also be stabilized through oxygen-independent mechanisms, largely 

mediated by growth factor/receptor signaling pathways. These include PI3K–Akt/mTOR, NF-κB, and EGFR 

signaling, which enhance HIF-1α synthesis and transcriptional activity even under normoxia. Growth factors 

such as PDGF, TNF-α, IL-1β, and GHRH further potentiate these effects, amplifying the hypoxic response. 

Through both oxygen-dependent and oxygen-independent mechanisms, HIF-1α drives the expression of target 

genes that promote adaptive responses including angiogenesis (VEGF), glycolysis (GLUT1), erythropoiesis 

(EPO), and cell proliferation (TGF-α). Created in BioRender. Reme, A. (2025) https://BioRender.com/wytkie. 

The PHD-mediated hydroxylation of the HIF alpha subunit is dependent on the presence of 

molecular oxygen, α-ketoglutarate, ascorbate, as well as iron as a catalyst [26]. The interference with 

the iron catalyst through iron chelation with deferoxamine (DFO) or through competing with the 

PHD iron binding site with cobalt chloride (CoCl2) prevents PHD mediated hydroxylation of HIF 

alpha subunits and allows for chemical stabilization of HIF alpha subunits in in vitro experiments 

[27,28]. Under hypoxic conditions, PHD proteins cannot hydroxylate the HIF alpha subunits, and the 

HIF alpha subunit translocates to the nucleus where it forms a heterodimer with the HIF beta subunit 

[29]. The HIF heterodimer complex binds to specific core DNA sequences most often located near the 

promoters of HIF target genes termed hypoxic response elements (HREs) [30]. The bHLH sequence 

is crucial for DNA-binding and the three PAS regions, PAS-A, PAS-B, and PAS-associated C-terminal 

domain, are involved in heterodimerization [18]. HIF-1α and HIF-2α contain N-terminal and C-

terminal transactivation domains (N-TAD and C-TAD, respectively) that are involved in the 
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activation of HIF target genes [31]. These domains associate with additional transcriptional co-

activators, most notably CBP and p300, which contain lysine acetyl-transferase activity [32]. The 

CTAD region of the HIF alpha subunit polypeptide contains an additional level of oxygen-dependent 

regulation via the Factor Inhibiting HIF (FIH). FIH hydroxylates an asparagine residue within the 

CTAD domains at even lower oxygen tensions than PHD proteins due to its lower Km for oxygen 

and thus exhibits negative regulation for the HIF alpha subunits even under hypoxic conditions [33]. 

HIF-1α and HIF-2α show strong sequence conservation between their bHLH and PAS regions 

which demonstrates their capacity to bind identical regions of DNA [18]. However, their NTAD 

regions confer target gene selectivity to the two proteins, likely secondary to distinct interactions with 

various transcriptional co-activators [34]. Interestingly, the CTAD region exhibits the least sequence 

conservation between the two proteins, however, they act to transactivate genes common to both 

HIF-1α and HIF-2α [35]. Several splice variants of HIF-3α exist which lack a functional CTAD region 

and may or may not contain an NTAD region [20]. The most well studied variant of HIF-3α, HIF-

3AF, lacks both transactivation domains, and functions to negatively regulate HIF-1α in an oxygen-

independent manner [36]. HIF-3α and its therapeutic potential for neovascularization are less 

characterized in the literature. Therefore, the remainder of this review paper will focus on HIF-1α 

and HIF-2α. 

HIF-1α and HIF-2α demonstrate temporal differences in their gene expression. HIF-1α responds 

to acute hypoxia within minutes and quickly induces the expression of its downstream target genes 

[37,38]. At around 8 hours, HIF-1α levels peak and begin to decrease and HIF-2α levels begin to rise. 

By 24–48 hours, HIF-2α levels become the more active responder to chronic hypoxia [34,39]. The fall 

in HIF-1α protein levels is, in part, attributable to hypoxia-associated factor (HAF) mediated 

ubiquitination which targets HIF-1α for VHL-mediated protein degradation in proliferating cells 

regardless of oxygen tension [40]. This oxygen-independent regulation does not occur to HIF-2α [41]. 

3. Oxygen-Independent Regulation of the HIFs 

While the HIF alpha subunits are canonically regulated at the post-translational level via 

oxygen-dependent hydroxylation, the subunits are also regulated by oxygen-independent crosstalk 

with other cell signaling pathways [42]. One area of signaling crosstalk comes from the NF-κB 

pathway [43]. It should come to no intuitive surprise that crosstalk exists between hypoxia and 

inflammatory cell signaling. Indeed, several studies have identified an NF-κB binding site within the 

promoter of HIF-1α [44]. One such study demonstrated that HIF-1α mRNA and protein levels 

increased in response to exogenous reactive oxygen species (ROS) administration, specifically H₂O₂, 

to cultured pulmonary artery smooth muscle cells (PASMCs) in normoxia [44,45]. This result implies 

direct HIF-1α transcriptional upregulation by NF-κB in an oxygen-independent manner [46]. 

Interestingly, TNF-α, a potent cell surface activator of NF-κB, has been demonstrated to promote 

HIF-1α protein activity, but the mechanism remains controversial given that there are conflicting 

results for increased HIF-1α DNA binding, increased HIF-1α mRNA levels, and post-translational 

protein stabilization that may vary based on cell types and experimental conditions [47–49]. For 

example, TNF-α has been shown to upregulate HIF-1α mRNA and protein levels via NF-κB in human 

pterygium fibroblasts in normoxic conditions [50] while TNF-α interferes with transcription of HIF 

target genes in cultured smooth muscle cells in hypoxia [51]. IL-1β can also upregulate HIF-1α in an 

NF-κB-dependent manner [52]. Additionally, NF-κB can upregulate HIF-1α expression in hypoxic 

environments, particularly in the central regions of the solid tumor microenvironment [53]. Hypoxia 

has been shown to upregulate HIF-1α mRNA via NF-κB through a PI3K/AKT pathway dependent 

mechanism in PASMCs [54]. 

The PI3K/AKT/mTOR and PI3K/AKT/FRAP pathway can also induce HIF-1α expression 

independently of NF-κB, as well as in both normoxia and hypoxia [55]. Various cell surface ligands 

and receptors can activate the PI3K/AKT pathway such as EGFR, PDGF, TNF-α, IL-1β, and insulin 

[9,56]. Interestingly, recent studies have identified growth hormone-releasing hormone (GHRH) as 

an upstream, oxygen-independent activator of HIF-1α in iPSC-derived cardiomyocytes via 
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GHRH/GHRH-R/cAMP signaling, acting as a mediator of cardiomyocyte proliferation and oxidative 

phosphorylation [57,58]. 

Additionally, many post-translational modifications of the HIF proteins can occur, such as 

phosphorylation and acetylation of HIF-1α protein [59]. Positive or negative regulation of HIF-1α by 

these post-translational modifications can be exhibited depending on where the modified amino acid 

is located within the protein [60]. For example, phosphorylation of serine residues by ERK1/2 of the 

MAPK pathway promotes HIF-1α transcriptional activity  and cell survival after hypoxic injury in 

cardiomyocytes [61]. Phosphorylation events occurring in the PAS or ODD regions inhibit HIF-1α 

protein activity [62]. 

Moreover, post-transcriptional modification of HIF-1α mRNA by microRNAs (miRNAs) adds 

an additional layer of regulation [63]. Active HIF-1α directly upregulates several small ~22 bp 

miRNAs which in turn regulate HIF-1α mRNA or protein stability in a positive or negative manner 

[64]. The most well-studied miRNA involved in regulating the activity of HIF-1α is miR-210 [65–67]. 

The expression of miR-210 is directly upregulated by HIF-1α in hypoxic conditions, which then binds 

to its target protein glycerol-3-phosphate dehydrogenase 1-like (GPD1L) [68]. GPD1L normally 

increases the activity of the PHD enzymes which subsequently promotes HIF-1α protein 

hydroxylation and degradation [68]. Increasing miR-210 by active HIF-1α in hypoxia results in a 

positive feedback loop with downregulation of GPD1L, resulting in less active PHD enzymes, and 

stable HIF-1α protein [65,69]. Other miRNAs, such as miR-155, can bind to the 3′ UTR region of HIF-

1α mRNA transcripts and interfere with translation [70] (Right, Figure 1). 

4. The HIF Proteins and Neovascularization 

The term “neovascularization” refers to the various processes that generate new blood vessels 

which include vasculogenesis, arteriogenesis, and angiogenesis [71]. Vasculogenesis occurs during 

embryonic development and involves de novo formation of blood vessels from vascular progenitor 

cells [72]. The HIF proteins play a pivotal role in vasculogenesis, however, given the confinement of 

vasculogenesis to embryonic development, this is beyond the scope of this review. 

Arteriogenesis refers to collateral formation from preexisting collateral vessels that occurs as a 

result from shifts in hemodynamic pressure from distal arterial occlusion [10]. These collaterals can 

be visible with iodinated contrast beyond the level of arterial occlusion during angiogram 

procedures. As the radius of the arterial lumen narrows with progressive atherosclerotic stenosis, 

increases in fluid shear stress remodel the pre-existing artery-arteriolar connections to allow blood 

flow down the path of least resistance [73]. The increase in fluid shear stress promotes the activity of 

endothelial nitric oxide synthase (eNOS), releasing nitric oxide, and promoting smooth muscle cell 

(SMC) relaxation and vasodilation [74]. 

VEGF is released along with monocyte chemotactic protein-1 (MCP-1) which promotes the 

upregulation of cell adhesion molecules (CAMs) on the endothelial cell surface and recruitment of 

monocytes, respectively [75]. Monocytes and platelets localize to the CAMs where they secrete 

various growth factors and cytokines to stimulate endothelial cell proliferation, a switch of SMCs 

from the contractile to proliferative phenotype, and ultimately, proliferation of collateral arterioles 

[74]. The process concludes with collateral vessel pruning, whereby, many smaller arterioles occlude 

in favor of fewer, larger arterioles, which favors flow and distal perfusion [74,76]. Arteriogenesis is 

often not enough to restore adequate distal perfusion, such as in the case of PAD. Collaterals formed 

via arteriogenesis are often present in patients undergoing surgical intervention with chronic limb-

threatening ischemia (CLTI) [77]. 

Whereas the inciting event for the initiation of arteriogenesis is increases in fluid shear stress, 

angiogenesis is initiated by tissue ischemia itself [71,78]. Angiogenesis refers to the process by which 

new capillaries are formed in response to ischemia to increase the delivery of oxygen and nutrients 

to the tissue [72,79]. The HIF proteins play a crucial role in angiogenesis as the presence of hypoxia 

stabilizes the alpha subunits, promoting translocation to the nucleus, heterodimerization with the 

beta subunit and DNA binding, followed by the upregulation of many potent pro-angiogenic genes 
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[10,80]. Angiogenesis can occur via two different mechanisms, sprouting and non-sprouting, or 

intussusceptive angiogenesis [79,81]. 

HIF expression can be upregulated in many cell types in the presence of ischemia, including 

fibroblasts, cardiomyocytes, skeletal muscle cells, immune cells, and solid tumor cells [80,82]. VEGF 

is the most well studied and potent stimulator of angiogenesis in the ischemic microenvironment and 

its expression is directly upregulated by HIF [10,83]. In sprouting angiogenesis, VEGF binds its 

receptor VEGFR-2 on endothelial cells which induces the formation of endothelial tip cells [76,84]. 

The tip cells are responsible for directing the growing vessel towards its chemotactic source by its tip 

projections, rather than elongation of the blood vessel. 

Close interplay between VEGF and anti-angiogenic Notch signaling facilitates coordinated 

formation of the new vessel [77,78]. The tip cell exhibits high VEGF/VEGFR-2 and high delta like 

ligand 4 (Dll4) expression with low Notch sig[10,80naling [78]. The increased Dll4 increases Notch 

signaling in neighboring endothelial cells which inhibits their migration. These endothelial cells with 

higher Notch signaling and lower Dll4 expression comprise the stalk cells, which exhibit a 

proliferative phenotype that facilitates the elongation of the new vessel [79,80]. 

HIF signaling in stalk cells maintains a sustained glycolytic metabolism which promotes cellular 

proliferation in low oxygen tension [83,85]. Additionally, HIF-1α promotes the secretion of matrix 

metalloproteases (MMPs), urokinase plasminogen activator (uPA), and plasminogen activator 

inhibitor-1 (PAI-1), which function to degrade the basement membrane and surrounding 

extracellular matrix (ECM) components to generate room for new blood vessels to form [82]. As the 

lumen of the new vessel is formed via a process called tubulogenesis, HIF-2α upregulates the 

expression of VE-cadherin to form new endothelial cell junctions, promoting vascular integrity and 

preventing luminal collapse [80,86]. 

Additionally, HIF-1α recruits pericytes to surround the endothelial cells, adding structural 

integrity to the vessel and preventing leakage [87]. Furthermore, the delayed onset of HIF-2α relative 

to HIF-1α explains their complementary role in angiogenesis. HIF-1α quickly upregulates VEGF 

expression to initiate the process of angiogenesis, and HIF-2α sustains the pro-angiogenic response 

in chronic hypoxia to promote vascular remodeling and integrity [72,83]. 

HIF-1α also plays a key role in recruiting hematopoietic and endothelial progenitor cells (EPCs) 

from the bone marrow to sites of ischemic tissue via its direct upregulation of its downstream target 

stromal-derived factor 1-alpha (SDF-1α) [88,89]. SDF-1α is a secreted cytokine from cells of ischemic 

tissue that enters the peripheral circulation and mobilizes to the bone marrow, where it binds with 

its receptor, CXCR4, on the cell surface of EPCs [90]. SDF-1α works synergistically with other pro-

angiogenic mobilizing factors such as VEGF, hepatocyte growth factor (HGF), and eNOS to mobilize 

EPCs from the bone marrow into the peripheral circulation [88,91]. 

A SDF-1α concentration gradient is established between the sites of ischemic insult and the 

peripheral circulation, resulting in homing of EPCs to sites of ischemia [92]. EPCs then proliferate 

and differentiate into mature endothelial cells that contribute to the formation of new blood vessels 

[89,90]. EPCs also secrete a variety of growth factors such as VEGF and SDF-1α that promote 

angiogenesis and further recruitment of EPCs to sites of ischemia [89,91]. Studies have shown that 

SDF-1 levels are increased after ischemic events, and cleavage-resistant gene delivery platforms of 

SDF-1 offer therapeutic potential in rodent models of myocardial infarction [93–95]. 

The HIF proteins upregulate a broad range of known pro-angiogenic genes.  A full list can be 

seen in Table 1. 

Table 1. Pro-angiogenic targets of HIF proteins. 

Target Gene Function Citation 

VEGF (VEGFA) 
Stimulates endothelial cell proliferation, 

migration, and new blood vessel formation 
[9]  
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5. HIFs and Ischemic Cardiovascular Disease 

Ischemic cardiovascular disease is the leading cause of death in the United States [96]. Arterial 

stenosis and subsequent occlusion due to the development of atherosclerotic plaque burden over 

time results in downstream tissue ischemia and hypoxia characterized by a reduction in blood flow 

and decreased oxygen supply that is insufficient for oxygen demand [97]. Atherosclerotic stenosis 

and occlusion are the pathological basis for many cardiovascular diseases including coronary artery 

disease (CAD), cerebral ischemia and stroke, mesenteric and renal ischemia, and PAD of the 

extremities [3,97]. Prolonged and worsening tissue hypoxia from severe atherosclerotic disease 

ultimately leads to end organ dysfunction such as ischemic cardiomyopathy in CAD and tissue loss 

in CLTI, the most severe form of PAD [3]. Additionally, acute plaque rupture and vessel thrombosis 

in the coronary, peripheral, or cerebral circulation results in acute severe hypoxia and infarction of 

tissue in myocardial infarction, acute limb ischemia, and stroke, respectively [98]. Moreover, 

myocardial conditions such as atrial fibrillation and left ventricular aneurysm, along with 

atherosclerotic aortic or carotid artery disease, can predispose patients to embolic events which result 

in acute tissue ischemia and infarction [96,97]. Abrupt onset of tissue ischemia is frequently more 

catastrophic given the lack of vessel collateralization that can be seen with chronic stenosis and 

occlusion [3].This section will focus on the role of HIF-1α in CAD and PAD followed by therapeutic 

implications for promoting angiogenesis and vessel collateralization. 

As discussed previously, HIF-1α is the major driver of hypoxia-induced angiogenesis and vessel 

collateralization to ischemic cardiomyocytes due to coronary artery atherosclerosis [3,99]. Many 

patients with CAD present with vessel collateralization bypassing obstructive plaque, while others 

lack collaterals. Increased collateralization correlates with reduced infarct size, lower heart failure 

risk, and decreased mortality [100,101]. In a porcine model of acute myocardial infarction, 

overexpression of HIF-1α resulted in increased myocardial perfusion post-injury [102]. HIF-1α 

expression also supports cardioprotection, reduced infarct size, and ischemic preconditioning [103]. 

In the acute phase of ischemic insult, this HIF-1α–mediated response serves as a protective 

ANGPT1 (Angiopoietin-1) 
Stabilizes blood vessels and promotes maturation 

via Tie2 receptor 
[158] 

ANGPTL4 (angiopoietin-related protein 4) 
Regulates vascular permeability and enhances 

endothelial cell survival 
[152] 

PDGFB (platelet-derived growth factor B) 
Recruits pericytes and smooth muscle cells for 

vessel stabilization 
[153] 

FGF2 (Basic fibroblast growth factor) 
Promotes proliferation and differentiation of 

endothelial cells 
[154] 

SDF-1 (CXCL12) 
Attracts endothelial progenitor cells to ischemic 

tissue 
[91] 

PIG (Placental growth factor) 
Enhances VEGF-driven angiogenesis and 

inflammatory cell recruitment 
[155] 

EPO (Erythropoietin) 
Indirectly promotes angiogenesis by enhancing 

red blood cell mass and oxygen delivery 
[3] 

MMP2 (Matrix metalloproteinase-2) 
Degrades extracellular matrix for endothelial 

migration and angiogenic sprouting 
[156] 

MMP9 (Matrix metalloproteinase-9) 
Facilitates basement membrane remodeling 

during angiogenesis 
[157] 
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mechanism to rescue injured tissue and restore perfusion. However, when hypoxic and ischemic 

insults are prolonged or overwhelming, the compensatory capacity of HIF-1α becomes maladaptive, 

tipping the balance toward pathological remodeling, chronic inflammation, and disease progression 

(Figure 2). 

 

Figure 2. HIF regulation and Ischemic Cardiovascular Diseases Atherosclerotic plaque–induced arterial 

stenosis causes tissue hypoxia from cardiovascular and peripheral ischemia. Hypoxia directly upregulates HIF-

1α, which activates transcription of angiogenic targets (e.g., VEGF, SDF-1), promoting cell survival, angiogenesis, 

vessel collateralization, and improved cardiac/limb function. In the acute phase of ischemic insult, this HIF-1α–

mediated response serves as a protective mechanism to rescue injured tissue and restore perfusion. However, 

when hypoxic and ischemic insults are prolonged or overwhelming, the compensatory capacity of HIF-1α 

becomes maladaptive, tipping the balance toward pathological remodeling, chronic inflammation, and disease 

progression. Created in BioRender. Reme, A. (2025) https://BioRender.com/wytkieo. 

Single nucleotide polymorphisms (SNPs) in the HIF-1 gene, specifically SNPs that lead to a 

Pro582Ser substitution, are associated with reduced collateral formation in coronary artery disease 

(CAD) and is linked a clinical presentation of stable exertional angina rather than acute myocardial 

infarction, indicating a potential role in earlier disease presentation [104]. In a Mexican population, 

the SNP rs2057482 is associated with decreased risk of developing premature CAD [105]. While out 

of scope of this review, the same SNP is associated with increased risk of various cancers and 

predictive of clinical outcomes, and has reduced binding to microRNA-199a, a negative regulator of 

HIF-1 levels that binds to the 3’-UTR [106,107]. This implies that increased HIF-1 protein levels confer 

protection against coronary ischemic events but may predispose patients to cancer progression that 

may be mediate by microRNA-199a. Indeed, the genetic diversity of HIF1A and the varying risks of 

cancer risk versus CAD protection is interesting and requires further study.  

In contrast, a recent systemic review and meta-analysis by Chaar and colleagues have found no 

association between SNPs of HIF-1 and risk of peripheral artery disease. [108]. These risk factors are 
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linked to decreased HIF-1α expression, reducing VEGF levels and endothelial progenitor cell 

recruitment. HIF-1α transcriptional activity drives endothelial cell sprouting, migration, and 

proliferation under hypoxia [3]. Vascular smooth muscle cells also promote vascular integrity during 

peripheral arterial perfusion [109]. Borton et al. showed that smooth muscle-specific deletion of 

ARNT (HIF-1β) increased vascular permeability and tissue damage in mice after femoral artery 

ligation, resembling acute limb ischemia [109]. These findings complicate the route to developing 

effective HIF-based therapies for PAD. 

Acute limb ischemia, often from emboli, differs from chronic PAD but can occur in PAD patients 

as acute on chronic limb ischemia. Tuomisto et al. found higher HIF-1α, HIF-2α, VEGF, VEGFR-2, 

and TNF-α expression in acute on chronic limb ischemia compared to chronic limb ischemia [110]. 

Heterogeneity in PAD patient populations, including socioeconomic factors, may affect HIF-1α 

expression and collateralization [111]. 

6. HIF-1 Modulation for Therapeutic Angiogenesis and Ischemic 

Cardiovascular Diseases 

The standard of care for ischemic cardiovascular disease is restoring arterial perfusion to 

alleviate hypoxia. In CAD and MI, this is typically achieved through percutaneous coronary 

intervention (PCI) using balloons and drug-eluting stents [112]. Some patients with multivessel 

disease or unfavorable anatomy are better suited for coronary artery bypass grafting (CABG), 

traditionally requiring sternotomy and cardiopulmonary bypass, though less invasive options are 

emerging [113]. Ischemic stroke is treated with tissue plasminogen activator (tPA) or mechanical 

thrombectomy to reestablish perfusion [114]. 

Chronic limb-threatening ischemia (CLTI) is marked by ischemic pain or tissue loss, most often 

in the distal lower extremities. Without intervention, these patients face a 22% annual risk of major 

limb amputation [115]. As with CAD, treatment involves endovascular or surgical revascularization 

to improve distal blood flow, oxygen delivery, pain relief, wound healing, and limb salvage. 

However, many patients are not candidates for revascularization due to comorbidities, previous 

failed interventions, or lack of suitable outflow targets. 

Diabetes frequently coexists with CLTI and contributes to both macrovascular and 

microvascular disease [116]. Occlusions often occur in the tibial and foot arteries, making surgical 

bypass challenging and less durable due to the distal location. Even when large vessels are 

successfully treated, microvascular disease in the diabetic foot remains a barrier to healing. Patients 

who cannot undergo revascularization are deemed to have “no-option” CLTI. In these cases, 

therapies that enhance HIF-1α expression and angiogenesis may offer new options for improving 

tissue oxygenation [117]. 

7. Prolyl Hydroxylase Domain Inhibition 

HIF-1α and HIF-2α are regulated by oxygen-dependent prolyl hydroxylase domain (PHD) 

enzymes, which target them for degradation. Inhibiting PHD enzymes stabilize HIF proteins and 

may promote angiogenesis [118]. Several preclinical studies have demonstrated the promise of this 

approach. In murine hindlimb ischemia models, PHD knockout or knockdown improved perfusion, 

motor function, and capillary density [119]. Studies using short hairpin RNA (shRNA) targeting 

PHD2 delivered via a minicircle vector (MC-shPHD2) achieved greater transfection efficiency, higher 

skeletal muscle HIF-1α levels, and up to 50% blood flow recovery compared to conventional vectors 

[120,121]. These results highlight the importance of delivery methods in gene-based therapies. 

In myocardial infarction models, PHD2 knockout led to markedly increased HIF-1α and VEGF 

levels in peri-infarct tissue, resulting in enhanced neovascularization, reduced fibrosis, and improved 

cardiac function [122–124]. Dual knockdown of PHD and FIH further augmented angiogenesis, 

progenitor cell recruitment, and reduced apoptosis, with upregulation of downstream genes such as 

VEGF, FGF2, and KDR [125]. Similar cardioprotective effects have been shown in various mouse and 
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human tissue models using pharmacologic or genetic silencing of PHD proteins [126]. However, not 

all findings have been favorable. In vitro treatment of human endothelial cells with 

dimethyloxalylglycine (DMOG), a chemical PHD inhibitor, reduced endothelial proliferation, 

migration, and tube formation, despite increased HIF levels [127]. This suggests that the method of 

HIF stabilization, cell type, and experimental context significantly influence the angiogenic response. 

Clinically, translation has been limited for PAD patients. One randomized trial using an oral 

PHD inhibitor GSK1278863 in PAD patients failed to improve walking performance or increase 

expression HIF-1 target genes [128]. Limitations included short treatment duration, oral 

administration, and lack of angiographic assessment. While oral PHD inhibitors like Roxadustat, 

Daprodustat, and Vadadustat have been approved to stimulate erythropoiesis in chronic kidney 

disease, their role in promoting angiogenesis for PAD or CLTI remains unproven. Safety concerns, 

including risks of thromboembolism and pulmonary hypertension, further complicate their use. 

8. HIF-1α Gene Overexpression 

While inhibiting the inhibitor of HIF-1α is a strategy to promote HIF-1α protein stabilization, 

inducing HIF-1α overexpression is an alternative to promote neovascularization [117]. Gene therapy 

for therapeutic angiogenesis uses plasmids or viral vectors to deliver target genes to ischemic tissue. 

Viral vectors include adenovirus, adeno-associated virus, and retroviruses [129]. Early preclinical 

studies using downstream targets of HIF-1α like VEGF, HGF, and FGF showed promise, but clinical 

trials with these growth factors yielded inconsistent results in PAD and CAD [130,131]. A trial in 

diabetic patients with no-option CLTI using VEGF/HGF bicistronic plasmid therapy reported 

increased serum VEGF, ABIs, and vessel collateralization, along with improved rest pain [132]. 

However, the trial was limited by a small cohort. These results suggest that coordinated signaling 

from multiple factors, as induced by HIF-1α, may be necessary for robust angiogenesis. 

Xue and colleagues used a transgenic diabetes mouse model to show that cardiomyocyte-

specific HIF-1α overexpression increases myocardial capillary density and prevented diabetes-

mediated cardiac hypertrophy and glycolytic metabolism remodeling [133]. In a mouse model of 

myocardial infarction, constitutive expression of HIF-1α attenuated infarct size, increased capillary 

density, and improved heart function 4 weeks after myocardial infarction [134]. This supports a 

rationale for targeting HIF-1α directly instead of its downstream factors. Preclinical studies have 

reinforced this. Intramyocardial injection of HIF-1α/VP16 hybrid increased capillary density and 

blood flow in rats post-LAD occlusion, similar to VEGF treatment [135]. Combined HIF-1α and VEGF 

therapy further increased vessel density but did not reduce infarct size. Remote quadriceps injection 

of HIF-1α promoted coronary vessel growth, reduced infarct size, and improved ventricular function, 

suggesting a role in ischemic preconditioning [136]. Sarkar et al. demonstrated in a mouse diabetic 

model of critical limb ischemia that adenoviral HIF-1α (AdCA5) increased arterial remodeling and 

perfusion, promoting both angiogenesis and arteriogenesis [137]. In diabetic mice, AdCA5 improved 

perfusion, tissue viability, and motor function and increased circulating angiogenic cells (CACs), 

which are typically diminished in diabetes [137]. 

Despite promising preclinical data, clinical trials with intramuscular HIF-1α gene therapy for 

PAD have been disappointing. A Phase 1 trial showed safety without tumorigenesis or ocular 

neovascularization, with some patients experiencing pain resolution and ulcer healing [131]. 

However, a larger double-blinded, randomized control trial in patients with intermittent claudication 

showed no improvement in walking time, ABIs, or biomarkers [138]. Low transfection efficiency may 

explain these results. Newer vectors like AAV2 and AAV9 may improve outcomes, though they have 

not been tested in humans. Inadequate preclinical models and differences in patient pathophysiology 

further complicate translation [117]. 

9. Cell-Based HIF-1α Therapies 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 October 2025 doi:10.20944/preprints202510.0665.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0665.v1
http://creativecommons.org/licenses/by/4.0/


 11 of 21 

 

Stem cell-based therapies show potential for ischemic cardiovascular disease. MSCs, ADSCs, 

EPCs, and iPSCs can differentiate into various cell types and secrete angiogenic factors [139]. MSCs 

are particularly attractive due to ease of harvest and low immunogenicity. Extracellular vesicles (EVs) 

from stem cells, such as exosomes, deliver pro-angiogenic molecules and influence target cells 

through paracrine signaling [139]. Stem cells also promote EPC homing via SDF-1α and can 

differentiate into relevant vascular and cardiac cells [139]. Nonetheless, clinical application of 

unmodified stem cells is limited by poor viability, retention, and homing. Hypoxic/ischemic 

environments, especially in diabetics, impair stem cell survival. Strategies to overcome this include 

genetic modification, chemical and physical surface modifications, and hydrogel encapsulation. HIF-

1α is central to many of these enhancements [117]. 

Hypoxia preconditioning activates HIF-1α and improves stem cell survival, proliferation, and 

pro-angiogenic activity [140]. A systematic review of hypoxia-conditioned ADSCs showed consistent 

upregulation of pro-angiogenic markers and viability [141]. Studies using hypoxia-mimicking agents 

or reduced oxygen tension confirmed these findings in vitro and in vivo [139]. One murine study 

showed that hi-MSCs enhanced perfusion, vessel density, and HIF-1α/VEGF expression versus 

normoxic MSCs [139]. Direct HIF-1α overexpression in stem cells using plasmids or viral vectors also 

enhances pro-angiogenic function [142]. CSCs may outperform MSCs in this regard. A study using 

HIF-1α-transfected CSCs embedded in fibrin gel (HIF-CSC-Gel) improved limb perfusion more than 

CSCs without the gel [142]. Combined therapy using HIF-1α gene delivery and MSCs in a myocardial 

infarction model enhanced angiogenesis and cardiac function compared to monotherapies, possibly 

due to improved MSC engraftment [142]. Future studies should explore combined therapies to 

optimize outcomes. 

Stem cell-derived EVs can also deliver miRNAs like miR-31 and miR-20b to ischemic tissues, 

promoting angiogenesis and reducing apoptosis in models of myocardial ischemia and reperfusion 

injury [143]. miR-31 targets FIH, reducing its expression and thereby enhancing HIF-1α activity [144]. 

Engineering stem cells or EVs with these miRNAs offers another avenue to boost HIF-1α-dependent 

neovascularization. 

The role of HIF-2α in therapeutic angiogenesis has received less attention. While better studied 

in cancer, HIF-2α contributes to vascular remodeling and integrity during chronic hypoxia [117]. 

Combining HIF-1α and HIF-2α gene therapies may offer a more durable and functional angiogenic 

response in atherosclerotic cardiovascular disease [117]. 

In summary, ischemic cardiovascular diseases including CAD and PAD comprise a massive 

healthcare burden with regards to morbidity, mortality, and healthcare economic burden [96]. The 

mainstay of treatment for both conditions is via traditional lifestyle modifications and medical 

therapy aimed at cardiovascular risk reduction (statins, anti-platelet agents, glycemic control, 

smoking cessation, etc.) and endovascular or surgical revascularization in the cases of AMI and CLTI 

[112,115]. Surgically or anatomically unfit patients exist in both CAD and PAD, leading to the basis 

for gene and cell-based therapy to improve neovascularization and improve functional outcomes. 

Despite early preclinical promise for both mechanisms of therapy, clinical trials have demonstrated 

serious limitations to gene and cell-based therapy resulting in failed treatment outcomes [131,132]. 

Improved functional outcomes in cardiac function, maximal walking distance, amputation-free 

survival, quality of life, morbidity, and mortality is the goal of therapeutic angiogenesis with these 

treatment modalities. 

5. Conclusions 

HIF-1 is the master regulator of a myriad of pro-angiogenic growth factors and cell survival 

responses and thus, HIF-1 overexpression is a key strategy to improve gene and cell-based therapy 

outcomes in treating ischemic cardiovascular diseases.  Future gene therapy-based strategies should 

focus on optimal vector delivery and transfection efficiency as well as duration of action and optimal 

dosing.  Hypoxic preconditioning of stem cells has demonstrated improved pro-angiogenic 

phenotypes in multiple stem cell types and is mediated by induction of HIF-1 expression. Future 
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clinical studies of cell-based treatment of ischemic cardiovascular disease should incorporate hypoxic 

preconditioning into their approach for optimized pro-angiogenic and cell retention efficacy. 

Combination treatments with gene and cell-based therapy may have additive effects in promoting 

stem cell engraftment, neovascularization, and functional outcomes. The addition of stem-cell 

derived exosomes for the delivery of miRNAs known to promote HIF-1 expression is also an active 

area of ongoing preclinical research and be additive to the above therapeutic strategies. The potential 

of HIF-2 for therapeutic angiogenesis in ischemic cardiovascular is not well studied in the literature 

and further investigation, either as a monotherapy or in combination with HIF-1 gene therapy, is 

warranted. Novel strategies to increase neovascularization of ischemic tissues which are not 

necessarily directly related to HIF-1 are under investigation in our research laboratory and involve 

the membrane-bound adhesion molecule, E-Selectin [145–151] To-date, no mechanistic intercept has 

been discovered that links the angiogenic signaling pathways of HIF-1 and membrane-bound E-

Selectin. However, the potential for synergism in combination therapies may deserve additional 

study. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

HIFs hypoxia inducible factors 

EPO erythropoietin 

RBC red blood cell 

VEGF Vascular Endothelial Growth Factor 

TCA tricarboxylic acid cycle 

ARNT aryl hydrocarbon receptor nuclear translocator 

ODD oxygen-dependent degradation 

PHD prolyl hydroxylase domain 

VHL Von Hippel Lindau 

DFO deferoxamine 

CoCl2 cobalt chloride 
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HREs  hypoxic response elements 

N-TAD N-terminal activation domains 

C-TAD C-terminal activation domains 

FIH Factor Inhibiting HIF 

HAF hypoxia-associated factor 

ROS reactive oxygen species 

PASMCs pulmonary artery smooth muscle cells 

EGFR Epidermal Growth Factor Receptor 

PDGF Platelet-Derived Growth Factor 

TNF-α Tumor Necrosis Factor-alpha 

IL-1β Interleukin-1 beta 

GHRH growth hormone-releasing hormone 

miRNAs microRNAs 

GPD1L glycerol-3-phosphate dehydrogenase 1-like 

eNOS endothelial nitric oxide synthase 

SMC smooth muscle cell 

MCP-1 monocyte chemotactic protein-1 

CAMs cell adhesion molecules 

PAD Peripheral Artery Disease 

CLTI chronic limb-threatening ischemia 

Dll4 delta like ligand 4 

MMPs matrix metalloproteases 

uPA urokinase plasminogen activator 

PAI-1 plasminogen activator inhibitor-1 

ECM extracellular matrix 

EPCs endothelial progenitor cells 

HGF hepatocyte growth factor 

SDF-1α Stromal Cell-Derived Factor-1 alpha 

CAD coronary artery disease 

SNPs Single nucleotide polymorphisms 

MI Myocardial Infarction 

PCI percutaneous coronary intervention 

CABG coronary artery bypass grafting 

tPA tissue plasminogen activator 

shRNA short hairpin RNA 

MC-shPHD2 minicircle vector 

FGF Fibroblast Growth Factor  

KDR Kinase Insert Domain Receptor 

DMOG Dimethyloxalylglycine 

ABI Ankle-Brachial Index 

AdCA5 adenoviral HIF-1α 

CACs circulating angiogenic cells 

AAV Adeno-Associated Virus 

MSCs Mesenchymal Stem Cells 

ADSCs Adipose-Derived Stem Cells 

EPCs Endothelial Progenitor Cells 

iPSCs Induced Pluripotent Stem Cells 

EVs Extracellular vesicles 

CSCs Cardiac stem cells 

HIF-CSC-Gel HIF-1α-transfected CSCs embedded in fibrin gel 

AMI acute myocardial infarction 
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