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Abstract

Hypoxia, or lack of adequate oxygen saturation, activates a vast repertoire of vascular responses to
increase cell survival and proliferation, driven primarily by activation of oxygen-sensing hypoxia
inducible factors (HIFs). Key hypoxia mediator HIF-1a is capable of driving vascular restructuring
in response to low oxygen tension and oxygen-independent signaling pathways, and thus serves as
a promising therapeutic modulator for ischemic cardiovascular diseases such as peripheral artery
disease and coronary artery disease. In this review, we discuss oxygen-dependent and oxygen-
independent mechanisms of HIF-la regulation, the HIF protein family’s role in vessel
collateralization, and translational efforts seeking to exploit HIF-1a’s key role in hypoxia signaling
for the purpose of therapeutic development of clinical treatments for ischemic cardiovascular disease.
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1. Introduction

Oxygen homeostasis, the balance of oxygen supply and demand, is crucial to the normal
functioning of molecular and cellular processes involved in cell metabolism, differentiation,
proliferation, and survival, as well as organ function and human survival [1,2]. Humans have
adapted cellular and biochemical responses to combat hypoxic insult key to many disease processes.
The most well studied are the hypoxia-inducible factors (HIFs) [3]. HIF-1 was identified in 1992 as a
transcription factor that upregulates erythropoietin (EPO) production in response to hypoxia by
binding to the EPO enhancer and increases its transcription [4-6]. EPO is a glycoprotein hormone
produced by specialized interstitial peritubular fibroblast-like cells of the kidney which acts to
promote erythropoiesis in the bone marrow in response to hypoxia and/or anemia, thereby increasing
circulating red blood cell (RBC) number and increasing oxygen delivery to tissues [7].

Further studies have since uncovered the hypoxic regulatory mechanisms of HIF-1a and the
more than 100 genes that it regulates [8]. HIF-1a plays a crucial role in promoting the formation of
new blood vessels (angiogenesis) through upregulation of growth factors such as VEGF [9-11],
facilitating an energy-conserving metabolic switch from aerobic to anaerobic metabolism via the
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upregulation of key glycolytic enzymes, increase in glucose transporters in the cell membrane, and
repression of mitochondrial TCA cycle enzymes — all serving to effectively increase the intracellular
oxygen tension [12,13]. Additionally, HIF-1a induction has been shown to increase EPO production
to increase circulating RBC volume [7], dampen the inflammatory response via extracellular
adenosine signaling [14], and promote cell proliferation and survival in hypoxic environments,
including solid tumors [15,16].

These HIF-driven cellular mechanisms are central to tissue survival in the response to ischemic
events, such as the growth of new collateral blood vessels in occluded cerebral, peripheral, and
coronary arteries to restore local circulation [17]. The purpose of this review paper is to explore the
biological regulation of the HIF proteins, the role of HIFs and its downstream targets in promoting
angiogenesis, and the clinical implications of therapeutic angiogenesis in ischemic coronary and
peripheral artery disease.

2. Oxygen-Dependent Regulation of the HIFs

HIF-1a and HIF-2a are heterodimeric transcription factors belonging to the basic helix-loop-
helix PER-ARNT-SIM family (bHLH-PAS) consisting of an oxygen-sensitive alpha subunit and a
constitutively expressed beta subunit (HIF-1(3) [18]. The beta subunit is also known as the aryl
hydrocarbon receptor nuclear translocator (ARNT) and is encoded by ARNT1 and ARNT2 [19]. HIF-
1p3 forms a heterodimer with both HIF-1a and HIF-2a [18]. Three isoforms of the alpha subunit exist
and are termed HIF-1a, HIF-2«, and HIF-3a, respectively [20]. The alpha subunits of HIF-1 and HIF-
2 exhibit stable transcription; however, they are tightly regulated at the protein level [21]. The alpha
subunit contains an oxygen-dependent degradation (ODD) domain which contains two specific
proline residues which are subject to hydroxylation by several prolyl hydroxylase domain proteins
(PHD1-4) under normal oxygen tension, or “normoxic” conditions [22]. Hydroxylation of the HIF
alpha subunits occurs in the cytoplasm of the cell, which subsequently leads to the binding of the
alpha subunit to Von Hippel Lindau protein (VHL) [23]. A complex formed with the E3 ubiquitin
ligase results in polyubiquitylation and subsequent degradation via the ubiquitin-proteasome
pathway [24]. The half-life of the HIF alpha subunits in the cytosol is approximately 5 minutes,
resulting in rapid protein degradation in normoxic conditions [25] (Left, Figure 1).
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Figure 1. Oxygen-dependent and oxygen-independent regulation of HIF-1a signaling. Under normoxic

conditions (left), HIF-1a undergoes prolyl hydroxylation by prolyl hydroxylase domain proteins (PHDs) and
factor inhibiting HIF (FIH), enabling recognition by von Hippel-Lindau protein (pVHL). This leads to
ubiquitination and proteasomal degradation of HIF-1a, preventing transcriptional activity. Under hypoxic
conditions (right), reduced hydroxylation stabilizes HIF-1a, allowing its accumulation and dimerization with
HIF-1p in the nucleus. The HIF-1a/p3 complex, together with transcriptional co-activators CBP and p300, binds
to hypoxia response elements (HREs) to activate transcription of target genes. In addition to this oxygen-
dependent regulation, HIF-la can also be stabilized through oxygen-independent mechanisms, largely
mediated by growth factor/receptor signaling pathways. These include PI3K-Akt/mTOR, NF-«xB, and EGFR
signaling, which enhance HIF-1a synthesis and transcriptional activity even under normoxia. Growth factors
such as PDGF, TNF-a, IL-18, and GHRH further potentiate these effects, amplifying the hypoxic response.
Through both oxygen-dependent and oxygen-independent mechanisms, HIF-1a drives the expression of target
genes that promote adaptive responses including angiogenesis (VEGF), glycolysis (GLUT1), erythropoiesis
(EPO), and cell proliferation (TGF-«). Created in BioRender. Reme, A. (2025) https://BioRender.com/wytkie.

The PHD-mediated hydroxylation of the HIF alpha subunit is dependent on the presence of
molecular oxygen, a-ketoglutarate, ascorbate, as well as iron as a catalyst [26]. The interference with
the iron catalyst through iron chelation with deferoxamine (DFO) or through competing with the
PHD iron binding site with cobalt chloride (CoCl2) prevents PHD mediated hydroxylation of HIF
alpha subunits and allows for chemical stabilization of HIF alpha subunits in in vitro experiments
[27,28]. Under hypoxic conditions, PHD proteins cannot hydroxylate the HIF alpha subunits, and the
HIF alpha subunit translocates to the nucleus where it forms a heterodimer with the HIF beta subunit
[29]. The HIF heterodimer complex binds to specific core DNA sequences most often located near the
promoters of HIF target genes termed hypoxic response elements (HREs) [30]. The bHLH sequence
is crucial for DNA-binding and the three PAS regions, PAS-A, PAS-B, and PAS-associated C-terminal
domain, are involved in heterodimerization [18]. HIF-1a and HIF-2a contain N-terminal and C-
terminal transactivation domains (N-TAD and C-TAD, respectively) that are involved in the
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activation of HIF target genes [31]. These domains associate with additional transcriptional co-
activators, most notably CBP and p300, which contain lysine acetyl-transferase activity [32]. The
CTAD region of the HIF alpha subunit polypeptide contains an additional level of oxygen-dependent
regulation via the Factor Inhibiting HIF (FIH). FIH hydroxylates an asparagine residue within the
CTAD domains at even lower oxygen tensions than PHD proteins due to its lower Km for oxygen
and thus exhibits negative regulation for the HIF alpha subunits even under hypoxic conditions [33].

HIF-1a and HIF-2a show strong sequence conservation between their bHLH and PAS regions
which demonstrates their capacity to bind identical regions of DNA [18]. However, their NTAD
regions confer target gene selectivity to the two proteins, likely secondary to distinct interactions with
various transcriptional co-activators [34]. Interestingly, the CTAD region exhibits the least sequence
conservation between the two proteins, however, they act to transactivate genes common to both
HIF-1a and HIF-2a [35]. Several splice variants of HIF-3a exist which lack a functional CTAD region
and may or may not contain an NTAD region [20]. The most well studied variant of HIF-3a, HIF-
3AF, lacks both transactivation domains, and functions to negatively regulate HIF-1a in an oxygen-
independent manner [36]. HIF-3a and its therapeutic potential for neovascularization are less
characterized in the literature. Therefore, the remainder of this review paper will focus on HIF-1a
and HIF-2a.

HIF-1a and HIF-2a demonstrate temporal differences in their gene expression. HIF-1a responds
to acute hypoxia within minutes and quickly induces the expression of its downstream target genes
[37,38]. At around 8 hours, HIF-1a levels peak and begin to decrease and HIF-2a levels begin to rise.
By 24-48 hours, HIF-2a levels become the more active responder to chronic hypoxia [34,39]. The fall
in HIF-1a protein levels is, in part, attributable to hypoxia-associated factor (HAF) mediated
ubiquitination which targets HIF-1a for VHL-mediated protein degradation in proliferating cells
regardless of oxygen tension [40]. This oxygen-independent regulation does not occur to HIF-2« [41].

3. Oxygen-Independent Regulation of the HIFs

While the HIF alpha subunits are canonically regulated at the post-translational level via
oxygen-dependent hydroxylation, the subunits are also regulated by oxygen-independent crosstalk
with other cell signaling pathways [42]. One area of signaling crosstalk comes from the NF-kB
pathway [43]. It should come to no intuitive surprise that crosstalk exists between hypoxia and
inflammatory cell signaling. Indeed, several studies have identified an NF-«kB binding site within the
promoter of HIF-1a [44]. One such study demonstrated that HIF-la mRNA and protein levels
increased in response to exogenous reactive oxygen species (ROS) administration, specifically H,O,,
to cultured pulmonary artery smooth muscle cells (PASMCs) in normoxia [44,45]. This result implies
direct HIF-1a transcriptional upregulation by NF-«B in an oxygen-independent manner [46].

Interestingly, TNF-a, a potent cell surface activator of NF-«kB, has been demonstrated to promote
HIF-1a protein activity, but the mechanism remains controversial given that there are conflicting
results for increased HIF-1a DNA binding, increased HIF-1ao mRNA levels, and post-translational
protein stabilization that may vary based on cell types and experimental conditions [47-49]. For
example, TNF-a has been shown to upregulate HIF-1a mRNA and protein levels via NF-kB in human
pterygium fibroblasts in normoxic conditions [50] while TNF-a interferes with transcription of HIF
target genes in cultured smooth muscle cells in hypoxia [51]. IL-1{3 can also upregulate HIF-1a in an
NF-«B-dependent manner [52]. Additionally, NF-kB can upregulate HIF-1ax expression in hypoxic
environments, particularly in the central regions of the solid tumor microenvironment [53]. Hypoxia
has been shown to upregulate HIF-la mRNA via NF-kB through a PI3K/AKT pathway dependent
mechanism in PASMCs [54].

The PI3K/AKT/mTOR and PI3K/AKT/FRAP pathway can also induce HIF-la expression
independently of NF-«B, as well as in both normoxia and hypoxia [55]. Various cell surface ligands
and receptors can activate the PI3K/AKT pathway such as EGFR, PDGF, TNF-q, IL-1f3, and insulin
[9,56]. Interestingly, recent studies have identified growth hormone-releasing hormone (GHRH) as
an upstream, oxygen-independent activator of HIF-la in iPSC-derived cardiomyocytes via
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GHRH/GHRH-R/cAMP signaling, acting as a mediator of cardiomyocyte proliferation and oxidative
phosphorylation [57,58].

Additionally, many post-translational modifications of the HIF proteins can occur, such as
phosphorylation and acetylation of HIF-1ca protein [59]. Positive or negative regulation of HIF-1a by
these post-translational modifications can be exhibited depending on where the modified amino acid
is located within the protein [60]. For example, phosphorylation of serine residues by ERK1/2 of the
MAPK pathway promotes HIF-1a transcriptional activity and cell survival after hypoxic injury in
cardiomyocytes [61]. Phosphorylation events occurring in the PAS or ODD regions inhibit HIF-1a
protein activity [62].

Moreover, post-transcriptional modification of HIF-1ao mRNA by microRNAs (miRNAs) adds
an additional layer of regulation [63]. Active HIF-1a directly upregulates several small ~22 bp
miRNAs which in turn regulate HIF-1aa mRNA or protein stability in a positive or negative manner
[64]. The most well-studied miRNA involved in regulating the activity of HIF-1a is miR-210 [65-67].
The expression of miR-210 is directly upregulated by HIF-1« in hypoxic conditions, which then binds
to its target protein glycerol-3-phosphate dehydrogenase 1-like (GPD1L) [68]. GPD1L normally
increases the activity of the PHD enzymes which subsequently promotes HIF-la protein
hydroxylation and degradation [68]. Increasing miR-210 by active HIF-1a in hypoxia results in a
positive feedback loop with downregulation of GPD1L, resulting in less active PHD enzymes, and
stable HIF-1a protein [65,69]. Other miRNAs, such as miR-155, can bind to the 3’ UTR region of HIF-
la mRNA transcripts and interfere with translation [70] (Right, Figure 1).

4. The HIF Proteins and Neovascularization

The term “neovascularization” refers to the various processes that generate new blood vessels
which include vasculogenesis, arteriogenesis, and angiogenesis [71]. Vasculogenesis occurs during
embryonic development and involves de novo formation of blood vessels from vascular progenitor
cells [72]. The HIF proteins play a pivotal role in vasculogenesis, however, given the confinement of
vasculogenesis to embryonic development, this is beyond the scope of this review.

Arteriogenesis refers to collateral formation from preexisting collateral vessels that occurs as a
result from shifts in hemodynamic pressure from distal arterial occlusion [10]. These collaterals can
be visible with iodinated contrast beyond the level of arterial occlusion during angiogram
procedures. As the radius of the arterial lumen narrows with progressive atherosclerotic stenosis,
increases in fluid shear stress remodel the pre-existing artery-arteriolar connections to allow blood
flow down the path of least resistance [73]. The increase in fluid shear stress promotes the activity of
endothelial nitric oxide synthase (eNOS), releasing nitric oxide, and promoting smooth muscle cell
(SMQ) relaxation and vasodilation [74].

VEGEF is released along with monocyte chemotactic protein-1 (MCP-1) which promotes the
upregulation of cell adhesion molecules (CAMs) on the endothelial cell surface and recruitment of
monocytes, respectively [75]. Monocytes and platelets localize to the CAMs where they secrete
various growth factors and cytokines to stimulate endothelial cell proliferation, a switch of SMCs
from the contractile to proliferative phenotype, and ultimately, proliferation of collateral arterioles
[74]. The process concludes with collateral vessel pruning, whereby, many smaller arterioles occlude
in favor of fewer, larger arterioles, which favors flow and distal perfusion [74,76]. Arteriogenesis is
often not enough to restore adequate distal perfusion, such as in the case of PAD. Collaterals formed
via arteriogenesis are often present in patients undergoing surgical intervention with chronic limb-
threatening ischemia (CLTI) [77].

Whereas the inciting event for the initiation of arteriogenesis is increases in fluid shear stress,
angiogenesis is initiated by tissue ischemia itself [71,78]. Angiogenesis refers to the process by which
new capillaries are formed in response to ischemia to increase the delivery of oxygen and nutrients
to the tissue [72,79]. The HIF proteins play a crucial role in angiogenesis as the presence of hypoxia
stabilizes the alpha subunits, promoting translocation to the nucleus, heterodimerization with the
beta subunit and DNA binding, followed by the upregulation of many potent pro-angiogenic genes
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[10,80]. Angiogenesis can occur via two different mechanisms, sprouting and non-sprouting, or
intussusceptive angiogenesis [79,81].

HIF expression can be upregulated in many cell types in the presence of ischemia, including
fibroblasts, cardiomyocytes, skeletal muscle cells, immune cells, and solid tumor cells [80,82]. VEGF
is the most well studied and potent stimulator of angiogenesis in the ischemic microenvironment and
its expression is directly upregulated by HIF [10,83]. In sprouting angiogenesis, VEGF binds its
receptor VEGFR-2 on endothelial cells which induces the formation of endothelial tip cells [76,84].
The tip cells are responsible for directing the growing vessel towards its chemotactic source by its tip
projections, rather than elongation of the blood vessel.

Close interplay between VEGF and anti-angiogenic Notch signaling facilitates coordinated
formation of the new vessel [77,78]. The tip cell exhibits high VEGF/VEGFR-2 and high delta like
ligand 4 (Dl14) expression with low Notch sig[10,80naling [78]. The increased DIl4 increases Notch
signaling in neighboring endothelial cells which inhibits their migration. These endothelial cells with
higher Notch signaling and lower DIl4 expression comprise the stalk cells, which exhibit a
proliferative phenotype that facilitates the elongation of the new vessel [79,80].

HIF signaling in stalk cells maintains a sustained glycolytic metabolism which promotes cellular
proliferation in low oxygen tension [83,85]. Additionally, HIF-1a promotes the secretion of matrix
metalloproteases (MMPs), urokinase plasminogen activator (uPA), and plasminogen activator
inhibitor-1 (PAI-1), which function to degrade the basement membrane and surrounding
extracellular matrix (ECM) components to generate room for new blood vessels to form [82]. As the
lumen of the new vessel is formed via a process called tubulogenesis, HIF-2a. upregulates the
expression of VE-cadherin to form new endothelial cell junctions, promoting vascular integrity and
preventing luminal collapse [80,86].

Additionally, HIF-1a recruits pericytes to surround the endothelial cells, adding structural
integrity to the vessel and preventing leakage [87]. Furthermore, the delayed onset of HIF-2a relative
to HIF-1a explains their complementary role in angiogenesis. HIF-1a quickly upregulates VEGF
expression to initiate the process of angiogenesis, and HIF-2a sustains the pro-angiogenic response
in chronic hypoxia to promote vascular remodeling and integrity [72,83].

HIF-1« also plays a key role in recruiting hematopoietic and endothelial progenitor cells (EPCs)
from the bone marrow to sites of ischemic tissue via its direct upregulation of its downstream target
stromal-derived factor 1-alpha (SDF-1a) [88,89]. SDF-1a is a secreted cytokine from cells of ischemic
tissue that enters the peripheral circulation and mobilizes to the bone marrow, where it binds with
its receptor, CXCR4, on the cell surface of EPCs [90]. SDF-1a works synergistically with other pro-
angiogenic mobilizing factors such as VEGF, hepatocyte growth factor (HGF), and eNOS to mobilize
EPCs from the bone marrow into the peripheral circulation [88,91].

A SDF-1a concentration gradient is established between the sites of ischemic insult and the
peripheral circulation, resulting in homing of EPCs to sites of ischemia [92]. EPCs then proliferate
and differentiate into mature endothelial cells that contribute to the formation of new blood vessels
[89,90]. EPCs also secrete a variety of growth factors such as VEGF and SDF-1a that promote
angiogenesis and further recruitment of EPCs to sites of ischemia [89,91]. Studies have shown that
SDEF-1 levels are increased after ischemic events, and cleavage-resistant gene delivery platforms of
SDF-1 offer therapeutic potential in rodent models of myocardial infarction [93-95].

The HIF proteins upregulate a broad range of known pro-angiogenic genes. A full list can be
seen in Table 1.

Table 1. Pro-angiogenic targets of HIF proteins.

Target Gene Function Citation

Stimulates endothelial cell proliferation,

VEGF (VEGFA) migration, and new blood vessel formation

9]
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during angiogenesis

5. HIFs and Ischemic Cardiovascular Disease

Ischemic cardiovascular disease is the leading cause of death in the United States [96]. Arterial
stenosis and subsequent occlusion due to the development of atherosclerotic plaque burden over
time results in downstream tissue ischemia and hypoxia characterized by a reduction in blood flow
and decreased oxygen supply that is insufficient for oxygen demand [97]. Atherosclerotic stenosis
and occlusion are the pathological basis for many cardiovascular diseases including coronary artery
disease (CAD), cerebral ischemia and stroke, mesenteric and renal ischemia, and PAD of the
extremities [3,97]. Prolonged and worsening tissue hypoxia from severe atherosclerotic disease
ultimately leads to end organ dysfunction such as ischemic cardiomyopathy in CAD and tissue loss
in CLTI, the most severe form of PAD [3]. Additionally, acute plaque rupture and vessel thrombosis
in the coronary, peripheral, or cerebral circulation results in acute severe hypoxia and infarction of
tissue in myocardial infarction, acute limb ischemia, and stroke, respectively [98]. Moreover,
myocardial conditions such as atrial fibrillation and left ventricular aneurysm, along with
atherosclerotic aortic or carotid artery disease, can predispose patients to embolic events which result
in acute tissue ischemia and infarction [96,97]. Abrupt onset of tissue ischemia is frequently more
catastrophic given the lack of vessel collateralization that can be seen with chronic stenosis and
occlusion [3].This section will focus on the role of HIF-1at in CAD and PAD followed by therapeutic
implications for promoting angiogenesis and vessel collateralization.

As discussed previously, HIF-1a is the major driver of hypoxia-induced angiogenesis and vessel
collateralization to ischemic cardiomyocytes due to coronary artery atherosclerosis [3,99]. Many
patients with CAD present with vessel collateralization bypassing obstructive plaque, while others
lack collaterals. Increased collateralization correlates with reduced infarct size, lower heart failure
risk, and decreased mortality [100,101]. In a porcine model of acute myocardial infarction,
overexpression of HIF-la resulted in increased myocardial perfusion post-injury [102]. HIF-1ax
expression also supports cardioprotection, reduced infarct size, and ischemic preconditioning [103].
In the acute phase of ischemic insult, this HIF-la-mediated response serves as a protective
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mechanism to rescue injured tissue and restore perfusion. However, when hypoxic and ischemic
insults are prolonged or overwhelming, the compensatory capacity of HIF-1a becomes maladaptive,
tipping the balance toward pathological remodeling, chronic inflammation, and disease progression
(Figure 2).

Atherosclerotic plaque induced arterial stenosis
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Figure 2. HIF regulation and Ischemic Cardiovascular Diseases Atherosclerotic plaque-induced arterial
stenosis causes tissue hypoxia from cardiovascular and peripheral ischemia. Hypoxia directly upregulates HIF-
1a, which activates transcription of angiogenic targets (e.g., VEGF, SDF-1), promoting cell survival, angiogenesis,
vessel collateralization, and improved cardiac/limb function. In the acute phase of ischemic insult, this HIF-1a—
mediated response serves as a protective mechanism to rescue injured tissue and restore perfusion. However,
when hypoxic and ischemic insults are prolonged or overwhelming, the compensatory capacity of HIF-1a
becomes maladaptive, tipping the balance toward pathological remodeling, chronic inflammation, and disease

progression. Created in BioRender. Reme, A. (2025) https://BioRender.com/wytkieo.

Single nucleotide polymorphisms (SNPs) in the HIF-1 gene, specifically SNPs that lead to a
Pro582Ser substitution, are associated with reduced collateral formation in coronary artery disease
(CAD) and is linked a clinical presentation of stable exertional angina rather than acute myocardial
infarction, indicating a potential role in earlier disease presentation [104]. In a Mexican population,
the SNP rs2057482 is associated with decreased risk of developing premature CAD [105]. While out
of scope of this review, the same SNP is associated with increased risk of various cancers and
predictive of clinical outcomes, and has reduced binding to microRNA-199a, a negative regulator of
HIF-1 levels that binds to the 3’-UTR [106,107]. This implies that increased HIF-1 protein levels confer
protection against coronary ischemic events but may predispose patients to cancer progression that
may be mediate by microRNA-199a. Indeed, the genetic diversity of HIF1A and the varying risks of
cancer risk versus CAD protection is interesting and requires further study.

In contrast, a recent systemic review and meta-analysis by Chaar and colleagues have found no
association between SNPs of HIF-1 and risk of peripheral artery disease. [108]. These risk factors are
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linked to decreased HIF-la expression, reducing VEGEF levels and endothelial progenitor cell
recruitment. HIF-1a transcriptional activity drives endothelial cell sprouting, migration, and
proliferation under hypoxia [3]. Vascular smooth muscle cells also promote vascular integrity during
peripheral arterial perfusion [109]. Borton et al. showed that smooth muscle-specific deletion of
ARNT (HIF-1pB) increased vascular permeability and tissue damage in mice after femoral artery
ligation, resembling acute limb ischemia [109]. These findings complicate the route to developing
effective HIF-based therapies for PAD.

Acute limb ischemia, often from emboli, differs from chronic PAD but can occur in PAD patients
as acute on chronic limb ischemia. Tuomisto et al. found higher HIF-1«, HIF-2a, VEGF, VEGFR-2,
and TNF-a expression in acute on chronic limb ischemia compared to chronic limb ischemia [110].
Heterogeneity in PAD patient populations, including socioeconomic factors, may affect HIF-1a
expression and collateralization [111].

6. HIF-1a. Modulation for Therapeutic Angiogenesis and Ischemic
Cardiovascular Diseases

The standard of care for ischemic cardiovascular disease is restoring arterial perfusion to
alleviate hypoxia. In CAD and MI, this is typically achieved through percutaneous coronary
intervention (PCI) using balloons and drug-eluting stents [112]. Some patients with multivessel
disease or unfavorable anatomy are better suited for coronary artery bypass grafting (CABG),
traditionally requiring sternotomy and cardiopulmonary bypass, though less invasive options are
emerging [113]. Ischemic stroke is treated with tissue plasminogen activator (tPA) or mechanical
thrombectomy to reestablish perfusion [114].

Chronic limb-threatening ischemia (CLTI) is marked by ischemic pain or tissue loss, most often
in the distal lower extremities. Without intervention, these patients face a 22% annual risk of major
limb amputation [115]. As with CAD, treatment involves endovascular or surgical revascularization
to improve distal blood flow, oxygen delivery, pain relief, wound healing, and limb salvage.
However, many patients are not candidates for revascularization due to comorbidities, previous
failed interventions, or lack of suitable outflow targets.

Diabetes frequently coexists with CLTI and contributes to both macrovascular and
microvascular disease [116]. Occlusions often occur in the tibial and foot arteries, making surgical
bypass challenging and less durable due to the distal location. Even when large vessels are
successfully treated, microvascular disease in the diabetic foot remains a barrier to healing. Patients
who cannot undergo revascularization are deemed to have “no-option” CLTI. In these cases,
therapies that enhance HIF-1a expression and angiogenesis may offer new options for improving
tissue oxygenation [117].

7. Prolyl Hydroxylase Domain Inhibition

HIF-1a and HIF-2a are regulated by oxygen-dependent prolyl hydroxylase domain (PHD)
enzymes, which target them for degradation. Inhibiting PHD enzymes stabilize HIF proteins and
may promote angiogenesis [118]. Several preclinical studies have demonstrated the promise of this
approach. In murine hindlimb ischemia models, PHD knockout or knockdown improved perfusion,
motor function, and capillary density [119]. Studies using short hairpin RNA (shRNA) targeting
PHD? delivered via a minicircle vector (MC-shPHD?2) achieved greater transfection efficiency, higher
skeletal muscle HIF-1a levels, and up to 50% blood flow recovery compared to conventional vectors
[120,121]. These results highlight the importance of delivery methods in gene-based therapies.

In myocardial infarction models, PHD2 knockout led to markedly increased HIF-1a and VEGF
levels in peri-infarct tissue, resulting in enhanced neovascularization, reduced fibrosis, and improved
cardiac function [122-124]. Dual knockdown of PHD and FIH further augmented angiogenesis,
progenitor cell recruitment, and reduced apoptosis, with upregulation of downstream genes such as
VEGE, FGF2, and KDR [125]. Similar cardioprotective effects have been shown in various mouse and
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human tissue models using pharmacologic or genetic silencing of PHD proteins [126]. However, not
all findings have been favorable. In vitro treatment of human endothelial cells with
dimethyloxalylglycine (DMOG), a chemical PHD inhibitor, reduced endothelial proliferation,
migration, and tube formation, despite increased HIF levels [127]. This suggests that the method of
HIF stabilization, cell type, and experimental context significantly influence the angiogenic response.
Clinically, translation has been limited for PAD patients. One randomized trial using an oral
PHD inhibitor GSK1278863 in PAD patients failed to improve walking performance or increase
expression HIF-1 target genes [128]. Limitations included short treatment duration, oral
administration, and lack of angiographic assessment. While oral PHD inhibitors like Roxadustat,
Daprodustat, and Vadadustat have been approved to stimulate erythropoiesis in chronic kidney
disease, their role in promoting angiogenesis for PAD or CLTI remains unproven. Safety concerns,
including risks of thromboembolism and pulmonary hypertension, further complicate their use.

8. HIF-1a Gene Overexpression

While inhibiting the inhibitor of HIF-1a is a strategy to promote HIF-1a protein stabilization,
inducing HIF-1a overexpression is an alternative to promote neovascularization [117]. Gene therapy
for therapeutic angiogenesis uses plasmids or viral vectors to deliver target genes to ischemic tissue.
Viral vectors include adenovirus, adeno-associated virus, and retroviruses [129]. Early preclinical
studies using downstream targets of HIF-1a like VEGF, HGF, and FGF showed promise, but clinical
trials with these growth factors yielded inconsistent results in PAD and CAD [130,131]. A trial in
diabetic patients with no-option CLTI using VEGF/HGF bicistronic plasmid therapy reported
increased serum VEGF, ABIs, and vessel collateralization, along with improved rest pain [132].
However, the trial was limited by a small cohort. These results suggest that coordinated signaling
from multiple factors, as induced by HIF-1a, may be necessary for robust angiogenesis.

Xue and colleagues used a transgenic diabetes mouse model to show that cardiomyocyte-
specific HIF-1a overexpression increases myocardial capillary density and prevented diabetes-
mediated cardiac hypertrophy and glycolytic metabolism remodeling [133]. In a mouse model of
myocardial infarction, constitutive expression of HIF-1a attenuated infarct size, increased capillary
density, and improved heart function 4 weeks after myocardial infarction [134]. This supports a
rationale for targeting HIF-1a directly instead of its downstream factors. Preclinical studies have
reinforced this. Intramyocardial injection of HIF-1a/VP16 hybrid increased capillary density and
blood flow in rats post-LAD occlusion, similar to VEGF treatment [135]. Combined HIF-1a and VEGF
therapy further increased vessel density but did not reduce infarct size. Remote quadriceps injection
of HIF-1a promoted coronary vessel growth, reduced infarct size, and improved ventricular function,
suggesting a role in ischemic preconditioning [136]. Sarkar et al. demonstrated in a mouse diabetic
model of critical limb ischemia that adenoviral HIF-1a (AdCAS5) increased arterial remodeling and
perfusion, promoting both angiogenesis and arteriogenesis [137]. In diabetic mice, AACAS5 improved
perfusion, tissue viability, and motor function and increased circulating angiogenic cells (CACs),
which are typically diminished in diabetes [137].

Despite promising preclinical data, clinical trials with intramuscular HIF-1a gene therapy for
PAD have been disappointing. A Phase 1 trial showed safety without tumorigenesis or ocular
neovascularization, with some patients experiencing pain resolution and ulcer healing [131].
However, a larger double-blinded, randomized control trial in patients with intermittent claudication
showed no improvement in walking time, ABIs, or biomarkers [138]. Low transfection efficiency may
explain these results. Newer vectors like AAV2 and AAV9 may improve outcomes, though they have
not been tested in humans. Inadequate preclinical models and differences in patient pathophysiology
further complicate translation [117].

9. Cell-Based HIF-1a Therapies
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Stem cell-based therapies show potential for ischemic cardiovascular disease. MSCs, ADSCs,
EPCs, and iPSCs can differentiate into various cell types and secrete angiogenic factors [139]. MSCs
are particularly attractive due to ease of harvest and low immunogenicity. Extracellular vesicles (EVs)
from stem cells, such as exosomes, deliver pro-angiogenic molecules and influence target cells
through paracrine signaling [139]. Stem cells also promote EPC homing via SDF-la and can
differentiate into relevant vascular and cardiac cells [139]. Nonetheless, clinical application of
unmodified stem cells is limited by poor viability, retention, and homing. Hypoxic/ischemic
environments, especially in diabetics, impair stem cell survival. Strategies to overcome this include
genetic modification, chemical and physical surface modifications, and hydrogel encapsulation. HIF-
la is central to many of these enhancements [117].

Hypoxia preconditioning activates HIF-1a and improves stem cell survival, proliferation, and
pro-angiogenic activity [140]. A systematic review of hypoxia-conditioned ADSCs showed consistent
upregulation of pro-angiogenic markers and viability [141]. Studies using hypoxia-mimicking agents
or reduced oxygen tension confirmed these findings in vitro and in vivo [139]. One murine study
showed that hi-MSCs enhanced perfusion, vessel density, and HIF-1a/VEGF expression versus
normoxic MSCs [139]. Direct HIF-1a overexpression in stem cells using plasmids or viral vectors also
enhances pro-angiogenic function [142]. CSCs may outperform MSCs in this regard. A study using
HIF-1a-transfected CSCs embedded in fibrin gel (HIF-CSC-Gel) improved limb perfusion more than
CSCs without the gel [142]. Combined therapy using HIF-1a gene delivery and MSCs in a myocardial
infarction model enhanced angiogenesis and cardiac function compared to monotherapies, possibly
due to improved MSC engraftment [142]. Future studies should explore combined therapies to
optimize outcomes.

Stem cell-derived EVs can also deliver miRNAs like miR-31 and miR-20b to ischemic tissues,
promoting angiogenesis and reducing apoptosis in models of myocardial ischemia and reperfusion
injury [143]. miR-31 targets FIH, reducing its expression and thereby enhancing HIF-1a activity [144].
Engineering stem cells or EVs with these miRNAs offers another avenue to boost HIF-1a-dependent
neovascularization.

The role of HIF-2at in therapeutic angiogenesis has received less attention. While better studied
in cancer, HIF-2ax contributes to vascular remodeling and integrity during chronic hypoxia [117].
Combining HIF-1a and HIF-2a gene therapies may offer a more durable and functional angiogenic
response in atherosclerotic cardiovascular disease [117].

In summary, ischemic cardiovascular diseases including CAD and PAD comprise a massive
healthcare burden with regards to morbidity, mortality, and healthcare economic burden [96]. The
mainstay of treatment for both conditions is via traditional lifestyle modifications and medical
therapy aimed at cardiovascular risk reduction (statins, anti-platelet agents, glycemic control,
smoking cessation, etc.) and endovascular or surgical revascularization in the cases of AMI and CLTI
[112,115]. Surgically or anatomically unfit patients exist in both CAD and PAD, leading to the basis
for gene and cell-based therapy to improve neovascularization and improve functional outcomes.
Despite early preclinical promise for both mechanisms of therapy, clinical trials have demonstrated
serious limitations to gene and cell-based therapy resulting in failed treatment outcomes [131,132].
Improved functional outcomes in cardiac function, maximal walking distance, amputation-free
survival, quality of life, morbidity, and mortality is the goal of therapeutic angiogenesis with these
treatment modalities.

5. Conclusions

HIF-1a is the master regulator of a myriad of pro-angiogenic growth factors and cell survival
responses and thus, HIF-1a overexpression is a key strategy to improve gene and cell-based therapy
outcomes in treating ischemic cardiovascular diseases. Future gene therapy-based strategies should
focus on optimal vector delivery and transfection efficiency as well as duration of action and optimal
dosing. Hypoxic preconditioning of stem cells has demonstrated improved pro-angiogenic
phenotypes in multiple stem cell types and is mediated by induction of HIF-1la expression. Future
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clinical studies of cell-based treatment of ischemic cardiovascular disease should incorporate hypoxic
preconditioning into their approach for optimized pro-angiogenic and cell retention efficacy.
Combination treatments with gene and cell-based therapy may have additive effects in promoting
stem cell engraftment, neovascularization, and functional outcomes. The addition of stem-cell
derived exosomes for the delivery of miRNAs known to promote HIF-1a expression is also an active
area of ongoing preclinical research and be additive to the above therapeutic strategies. The potential
of HIF-2a for therapeutic angiogenesis in ischemic cardiovascular is not well studied in the literature
and further investigation, either as a monotherapy or in combination with HIF-1a gene therapy, is
warranted. Novel strategies to increase neovascularization of ischemic tissues which are not
necessarily directly related to HIF-1a are under investigation in our research laboratory and involve
the membrane-bound adhesion molecule, E-Selectin [145-151] To-date, no mechanistic intercept has
been discovered that links the angiogenic signaling pathways of HIF-1a. and membrane-bound E-
Selectin. However, the potential for synergism in combination therapies may deserve additional
study.
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Abbreviations

The following abbreviations are used in this manuscript:

HIFs hypoxia inducible factors

EPO erythropoietin

RBC red blood cell

VEGF Vascular Endothelial Growth Factor
TCA tricarboxylic acid cycle

ARNT aryl hydrocarbon receptor nuclear translocator
ODD oxygen-dependent degradation
PHD prolyl hydroxylase domain

VHL Von Hippel Lindau

DFO deferoxamine

CoCl2 cobalt chloride
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HREs hypoxic response elements

N-TAD N-terminal activation domains

C-TAD C-terminal activation domains

FIH Factor Inhibiting HIF

HAF hypoxia-associated factor

ROS reactive oxygen species

PASMCs pulmonary artery smooth muscle cells

EGFR Epidermal Growth Factor Receptor

PDGF Platelet-Derived Growth Factor

TNF-a Tumor Necrosis Factor-alpha

IL-1B Interleukin-1 beta

GHRH growth hormone-releasing hormone

miRNAs microRNAs

GPDI1L glycerol-3-phosphate dehydrogenase 1-like

eNOS endothelial nitric oxide synthase

SMC smooth muscle cell

MCP-1 monocyte chemotactic protein-1

CAMs cell adhesion molecules

PAD Peripheral Artery Disease

CLTI chronic limb-threatening ischemia

Dll4 delta like ligand 4

MMPs matrix metalloproteases

uPA urokinase plasminogen activator

PAI-1 plasminogen activator inhibitor-1

ECM extracellular matrix

EPCs endothelial progenitor cells

HGF hepatocyte growth factor

SDF-1a Stromal Cell-Derived Factor-1 alpha

CAD coronary artery disease

SNPs Single nucleotide polymorphisms

MI Myocardial Infarction

PCI percutaneous coronary intervention

CABG coronary artery bypass grafting

tPA tissue plasminogen activator

shRNA short hairpin RNA

MC-shPHD2 minicircle vector

FGF Fibroblast Growth Factor

KDR Kinase Insert Domain Receptor

DMOG Dimethyloxalylglycine

ABI Ankle-Brachial Index

AdCA5 adenoviral HIF-1«

CAGCs circulating angiogenic cells

AAV Adeno-Associated Virus

MSCs Mesenchymal Stem Cells

ADSCs Adipose-Derived Stem Cells

EPCs Endothelial Progenitor Cells

iPSCs Induced Pluripotent Stem Cells

EVs Extracellular vesicles

CSCs Cardiac stem cells

HIF-CSC-Gel HIF-1a-transfected CSCs embedded in fibrin gel

AMI acute myocardial infarction
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