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Abstract

We propose a generalized relational expression (GRE) through dimensional analysis, which serves
to unify a broad class of dimensional uncertainty relations (URs). We derive a general form of UR
wherein the product of two or more non-commutative physical quantities (PQs) of specific
dimensions is equated to a power product of the fundamental constants: the reduced Planck constant
h, gravitational constant G, speed of light in vacuum c, Boltzmann constant k, and elementary charge
e. Our analysis reveals that every dimensioned PQ is associated with a characteristic Planck scale.
PQs sharing the identical dimensions consequently share identical Planck scales. These Planck scales
are categorized into two primary types: one comprising the basic and derived Planck scales, the other
including Fermi-Planck, Bose-Planck, and other scales. We demonstrate that the Planck scale
corresponding to any PQ can be expressed as a power product of the Planck length, Planck time,
Planck mass, Planck temperature, and the elementary charge (or Planck charge). The GRE is then
established by equating the power product of non-commutative PQs to the one of their corresponding
Planck scales. Applying the GRE, we derive a Big Bang UR relating the temperature and volume of
the Big Bang, and a Schwarzschild black hole (SBH) UR connecting the mass and volume of a SBH.
These URs, when quantum effects are incorporated, suggest no singularities in both the Big Bang and
SBH scenarios. The functional relationships between PQs are inherently governed by the GRE. By
selecting sets of two, three, and four PQs within the GRE framework, we obtain corresponding
general formulae. Under specific constraints, such as setting the exponents of the fundamental
constants to zero or to empirically fitted values, these general formulae reduce to numerous famous
factorless equations. These include the Einstein's mass-energy relation, the SBH horizon temperature
formula, Casimir effect equation, Planck blackbody radiation law, Stefan-Boltzmann law, Einstein
field equations, Newton's law of gravitation, Schrédinger equation, Coulomb's law, Newton's second
law, acceleration of holographic dark energy (HDE), Clapeyron equation, superconducting thin-film
power law, and formulas for the critical temperature of LSCO cuprates, among others. Furthermore,
several novel relationships are proposed, such as those connecting the square of the SBH energy to
its density, sixth power of the SBH radius to its energy density, and SBH pressure to its central
entropy density. We conclude that the proposed GRE is a generalized, insightful, and potent tool
with significant theoretical utility and broad applicability in theoretical physics.

Keywords: generalized relational expression (GRE); Heisenberg uncertainty principle; dimensional
analysis; power product; Planck scale; physical quantity (PQ)

PACS: 03.65.Ta, 03.67.Lx, 04.60.-m

1. Introduction

The Heisenberg uncertainty principle [1] has led to significant advances in applications [2-4],
theoretical developments [5-30], and experimental verifications [31-40]. These contributions have
reinforced its foundational status and expanded its conceptual scope. A variety of uncertainty
relations (URs) have since been proposed
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ApAr>h [1]; AEAt2h [1]; Ax>h / Ap+aliAp / h [41-50]; ARAS> <y I [R,S]1¢>] / 2 [51, 52]; H(R) +
H(Q) >1og1 / ¢ [53-63]; S(QIB) + S(RIB) >log21 / ¢ + S(AIB) [64-74]; dt= pt¥/3t/3 [75); 1/ s > 4rth / x
[76], ATAX~ 1% ~ 13 /c [72-74]; dxdydt~ Ly /c [75-80); L, ~ LpL [81-87];
e(Qn(P)+e(Q)a(P)+a(Q)n(P)=h / 2 [35, 36]; (df)(6r)* > mr2Ls / ¢ [88], etc.

where Ap is the momentum fluctuation, Ar the position momentum, h the reduced Planck
constant; AE the energy fluctuation, At the time fluctuation; Ax the position momentum, aa
dimensionless constant; Lp=,/hG/c® Planck length,G the gravitational constant, ¢ the speed of light in
vacuum;AR and AS the standard deviation of two arbitrary observables R and S; dt the time
fluctuation, 3 an order one constant, tp =\/W/c5 Planck time, t the time; 1 the ratio of shear viscosity
of a given fluid perfect, s its volume density of entropy, k the Boltzmann constant; AT the time-like,
AX its space-like, Lg the string scale; dx, dy, Ot are the position fluctuation and time fluctuation
separately; L, the transverse length, L the radial length; Q the position of a mass, ¢(Q) the root-
mean-square error, P its momentum, 7n(P) the root-mean-square disturbance, o(P) the standard
deviation; df and dr the sever space-time fluctuations of the constituents of the system at small scales,
and r the radius of globular computer.

Observing these URs, we can classify them to four types

I URs

ApAr2h;  AEAE> h; ARAS2I<GI[RS]IW>1 /2; o = B &% ; n/s > 4nh/x;
ATAX~13~13 / GLy, ~+/LpL; dxdydt~L3 / ¢;(dt)(6r)° 2mr2Ld / ¢;

II URs

e(Qn(P)+e(Q)a(P)+o(Q)n(P)zh / 2;

III URs

Ax>h / Ap+aliAp / b

IV URs (dimensionless)

H(R) + H(Q) 2 logz1 / ¢; S(QIB) + S(RIB) 2 1og21 / ¢ + S(A|B).

Etc.

We only research the I URs, II URs and III URs with dimensions. Two natural questions arise:
(i) Why does the gravitational constant G not appear on the right-hand side of certain URs? (ii) Can
these relations be unified within a single framework? In this work, we address these questions by
demonstrating that the absence of G results from appropriate dimensional reduction, and we
propose a unified formulation in the form of a generalized relational expression (GRE). Regarding
the origin and development of Planck units, such as the Planck length, Planck time, Planck mass
Mp=,/hc/G, Planck energyEp=4y/hc®/G and Planck temperature Tp =y/hc5/k2G, please refer to the
literature [89-96].

This paper is organized as follows. In Sec. 2, the general form of URs for two and n physical
quantities (PQs) is derived, and the underlying foundational relationship is established. Sec. 3
presents the concept of the Planck scale and provides a classification scheme for different types of
Planck scales. In Sec. 4, it is shown that the Planck scale corresponding to any PQ can be expressed
as a power product of the basic Planck scales; the GRE is formulated and rigorously proven, and the
URs introduced in Sec. 1 are subsequently verified. Sec. 5 applies the GRE to deduce several
significant results, including the Big Bang UR, the Schwarzschild black hole (SBH) UR, and a number
of well-known factor-free equations, such as Einstein's mass-energy relation, the SBH horizon
temperature formula, and the Casimir effect equation, among others. Additionally, several new
physical relationships are proposed. Finally, concluding remarks and a summary are provided in Sec.
6.

2. General Expression of URs and Basic Relationship

In this section, we discover the normal form of URs; derive the general expression of URs for
two PQs, basic relationship, and general expression of URs for n PQs.

2.1. General Expression of URs for two PQs

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0626.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 October 2025 d0i:10.20944/preprints202510.0626.v2

3 of 24

For the I URs and II URs (III URs can be regarded as the recombination of I and II), we discover
the physical constants such as h, G, ¢ and « on the right hand, and the PQs on left hand. We rewrite
them as

ApAr=h; AEAE2R Dt/ Be/3= 2P = n/3GY3¢™5/3; n/4ns >he'; ATAX~13~13 /c =
hGe™*;L,, / VL~ [Lp=h"/4G1/*c=3/4;

Axdydt~L13 / ¢ =h3/2G3/2c~11/2;(dt)(87)% / mr? 213 / ¢ =hGc™*,

2[e(Q)n(P)+&(Q)a(P)+a(Q)n(P) ] 2h;

Etc.

Therefore, the right-hand side of such relations naturally takes the form of a power product of
fundamental physical constants. This represents their canonical form. Considering two non-
commutative dimensional PQs, we derive the general form of the URs

AB~h*GYc%k"e (1)

Where A and B are non-commutative PQs, x, y, z, w and u the unknown number, and e the
elementary charge. Applying the dimensional analysis (here we use the LMTOQ units [97]"), the
dimensions of A and B are expressed as

[AJ=[L1% [M]A:[T]7:[0]%:[Q1%, [BI=[L1% [M]A[T]"2[0]% Q] )
whereL, M, T, ® and Q are the dimensions of length, mass, time, temperature and electric charge
separately, ai, a,, Bi, B2, Y1, Y2, 61, 82, eand &, the known real number. The dimensions of
h*GYc*k"e" is
[h*GY e ] ={[L2][M][T (LA M~ [T {[LI[ T {2 M][T~2] [0~ I3 {[Q1}* (3)
Then we obtain
[L1% [M1A [T [01%: [Q% [L]% [M]F2 [T [01% [Q] %= {[L2][M][T~ }*{[L3][M~*][T~2]”
LT L] MI[T=2] [0~ T3 {[QI} 4)
Solving the Eq. (4), we gain
x = [(ar T az) T (B +B2) T (r1 +y2) +(8:168,)] / 2,
y=[(artax) =B t+B) H (1 Tv2)—(6:162)] / 2,
z=—[3(ar taz) = (B +B2) T5(r1tv2) —5(6:162)] / 2,
w=—(8,16,), u=(e+e) ®)
Thus we find the general expression of URs for two PQs
AB~ [n((@+ @)+ Bt B)+aty2)+(81+ 62))]% [Gl@rt @)=(Bi+ B +(i+r2)=(6:1+ 62))]%
[~ B@rt @)=(Bit B)+5(11+12)=5(81+ 62))]3 . = (Br+8)gler+e2) (6)

This indicates that the product of two non-commutative dimensional PQs is equivalent to a
power product of the reduced Planck constant, gravitational constant, speed of light, Bolzmann
constant, and elementary charge.

2.2. Basic Relationship

Assuming a;=a,=a, B1=p,=B, v1= ¥V.=V, 6:= 6,=6, and &= &,=¢ in the general expression of
URs (6), that is A and B having the identical dimensions
[Al=[BI=[L]“[MIP[T]7[0]°[Q]* ?)
We obtain
pla+B+y+8) Gla—B+y—8) (—(Ba—B+5y-58)—28 g2 — ApBp = A%,= Bg (8)
where Ap and Bpindicatethe corresponding Planck scale of A and B separately. Here we assume
the Planck scales being identical because of their identical dimensions. Extracting the square root, we
find the basic relationship
A,\,AP:[h(a+ﬁ+y+6)G(a—ﬁ+y—6)C—(3a—ﬁ+5y—55)K—26e2£]% (9)
This relationship indicates that any PQ with dimension has a corresponding Planck scale,
expressible as a power product of h, G, ¢, k and e, that is PQs and Planck scales having the
supersymmetry [98-104].

IChien Wei-Zang used L, M, T, 6 and Q indicated the dimensions of length, mass, time, temperature and electric charge separately in
[97].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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If Ap#Bp, we assumeAp=ABp, where A is a fitted coefficient. Substituting it and Eq. (7) into Eq. (6),
we get
hla+B+y+8)Gla—p+y—8) -—(3a—P+5y—56)(—26 528 — ApBp = }\A%

Extracting the square root, we obtain
ANAP=[h(a+B+y+8)G(a—ﬁ+y—6)C—(3a—[3+5y—56)K—28e2£/}\]%N [h(a+ﬁ+y+8)G(a—ﬁ+y—6)C—(3a—[3+5y—56)K—28€2£]%

That is Eq. (9) omitting the coefficient. Same deduction applies to Eq. (13).

2.3. General Expression of URs for n PQs

Extending the analysis to n non-commutative dimensional PQs, we write

n L A~R*GYcPket, i=1,2,3...n (10)
where A;is a PQ,4; and 4;,, are non-commutative. The dimensions of [], 4; are
([T, A J=[LIZE @ [M]Z A T]EE vi[@]2F Si[Q] 2t & 11)

where «a;, B;, v, §; and ¢ are known real number. Applying the dimensional analysis again,
we find the general expression for n PQs
Y N[h((z?ai)+(zrﬁi>+(2?yi)+(2?<si))]g ) [G((E?ai>—(2?ﬁi)+(2?yi)—(z? si))];
_ [c—(s(Z’;ai)—(zf'ﬁi)+5(2?yi)—5(2?8i))]; e EF a0 e (12)
FOI‘ n= 2, lt reduces to Eq (6) Ordering ai=ai1=a, ﬁi=ﬁi+1=ﬁl Yi=Vi+1=V, 6i=5i+1= 1) and
g=¢&41= € in Eq. (12), 4; and A;;; having identical dimensions, we obtain
[hn(a+ﬁ+y+6)]%[Gn(a—ﬁ+y—6)]%[C—n(3a—ﬁ+5y—56)]%K—m$ens,\,A7l; (13)

Extracting the nth-root, we gain Eq. (9) again.

3. Planck Scale

In this section, we derive various Planck scales and present a systematic classification.

3.1. Basic Planck Scale

By assigning specific values to the dimensional exponents in Eq. (7) and applying Eq. (9), the
basic Planck scales are obtained as follows

Ordering @ =1, f =7y =6 = ¢ =0, we obtain Planck length immediately

Lp=y/hG/c3

Instructing y =1, a = = 6 = ¢ = 0, obtain Planck time

tP=\/F/C5

Ordering =1, a =y =6 = ¢ =0, obtain Planck mass

Mp =\/F/G

Instructing 6 =1, a = =y = € =0, obtain Planck temperature

To=y/hc®/12G

Ordering ¢ =1, @ = f =y = 6 =0, obtain elementary charge

Qe=e

If the dimension of electric charge is expressed as [Q]?=[L]*[M][T] 2, the Planck charge is
obtained as

Qp=vhc~ e

These constitute the basic Planck scales [88].

3.2. Derived Planck Scale

Using Egs. (7) and (9), additional derived Planck scales [88] can be obtained. For example
Planck energy Ep with [Ep] = [L]*[M][T] 2
Ep= v/he3/G
Planck momentum P, with [Pp] = [L][M][T]?!
Pp=/hc3/G
Planck curvature tensor R,,p with [R,,p] =[L]™2
Ryp= ¢/ hG

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Etc.

Many PQs share the same dimensions and therefore correspond to the same Planck scale. For
instance

Planck energy density pp, Planck pressure pp, Planck energy-momentum tensor T, all have
dimensions [L]7[M][T]7?, and share the Planck scale

pp=pp = Typ= ¢’ /hG?

And so on.

3.3. Classifications

All the Planck scales can be categorized into two types. The first includes the basic and derived
Planck scales [88]. The second category comprises

The Femi-Planck scale, with half-integer exponents, such as Lp, tp, Mp, Tp, Ep, Pp etc;

Bose-Planck scale, with integer exponents, such as Q., pp, Pp, Ruvp, Tuvp, €tc;

Other-Planck scale, such as the Planck wave function {p, [Wp] = [L]73/2, Yp=(hG/c>)73/*

4. GRE

In this section, we demonstrate that the basic relation (9) can be expressed as a power product
of basic Planck scales. We then introduce and prove the GRE, and use it to verify the URs presented
in Sec. 1.

4.1. Proof of Basic Relationship

Basic relationship (9) can be rewritten as
Ap=18MEETEQE (14)
From Egq. (9), we have
Ap = [h*G¥c3¢]5[hAG A P2 [hY G ¢SV 2[R GO c5 ket =
[VhG/c31%[\/hc/G)F[hG/cS] [/hc /k?GlPes=LEMAtE T Q5
Therefore, the Planck scale corresponding to any PQ can be expressed as a power product of the

Planck length, Planck time, Planck mass, Planck temperature, and elementary charge.

4.2. GRE

Considering all the non-commutative PQs with dimension, we find the GRE
AN~ AL i=1,2,3..n (15)
where A4;is a PQ, 4; and A4;,, are non-commutative, a; the real number, and A;p the
corresponding Planck scale of A4;. This indicates that the power product of non-commutative PQs is
equivalent to the one of their respective Planck scales.

4.3. Proving GRE

The proof follows the same dimensional analysis approach as in Section 2.3. For n non-
commutative PQs raised to powers a; power, we write

m Al ~R*GYcPWel (16)
The dimensions of [[-, A" are expressed as
(M, A?i]=[L]Z? @i [\|ZF aiBi[ T]ZE aivi[@]EF aidi [ Q1 @iei (17)

Using the dimensional analysis also, we obtain the general form
n Aaiw[h(@? aa)+(EF aiB)+ (T aiy)+E} aisi))]; , [G((Z? @)~} aiB)+(E} am)—@?ai«si))]g
i1=14%
. [(:—(3(21?l a;a)-CF aif)+5QF aiy) -5} 0—151))]% )~ EF ai8) o (EF aie)
G735 v [Re7G|3F {[RGESJP - [ RS G gl v (3 g3 Sl vy o3
= [, L‘;’iaiMgiﬁitgiyiTgi‘siQ‘;igi: ?=1Ali1]i’ (18)
where Ap=LEME TS Q% which confirms the GRE.

4.4. Proving URs

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Applying the GRE (15), we can prove the URs in Sec.1.
ApAr~ Pplp = /hc3/Gy/RG/c3 = h; AEAi~ Eptp = /hc5/GyRG/cS = h; ot/ t13 ~tp / t° = ¢&/%;
n/ s~np / sp=c?/hG3 / \[c%k?/h3G3® =h / 1; ATAX~tpLp~hG / c*= 13 / c~1%; Ly, / VL~Lp / \/Lp=\/Lp;
Sxdydt~Latp=L3 / ¢; (30)(81)3 / r2~tpLl} / 13=13 / c; (Q(P)+e(Q)o(P)+(Q)n(P)~/hG/c3/hc3/G= h,
etc.

where np=,/c®/hG? is the Planck ratio of shear viscosity of a given fluid perfect, and sp=/c’x?/h3G3
its Planck volume density of entropy (from basic relationship (9)). This demonstrates that the

gravitational constant G does not appear on the right-hand side of certain URs due to appropriate
dimensional reduction.

5. Application

A central goal in theoretical physics is to develop a universal framework from which established
physical laws can be derived. The Standard Model [105], represents a major achievement in this
direction, successfully unifying the electromagnetic, weak, and strong interactions. With the recent
experimental confirmation of the Higgs boson [106-112], all 62 predicted elementary particles have
been observed. However, the model does not incorporate gravity. Numerous beyond Standard
Model theories, including supersymmetry [98-104], supergravity [98-104], superstring/M-theory [41-
50], loop quantum gravity [44, 45, 47, 48], the causal set approach [113-117], the holographic principle
[118], the asymptotic safety scenario [119], causal dynamical triangulation [120-123], an exceptionally
simple theory of everything [124], unified field equations [125, 126], SQS theory [127], Quantum Field
Theory of Gravity and Hyperunified Field Theory [128], have been proposed to describe all four
fundamental forces. Nonetheless, experimental validation remains elusive [129].

5.1. Bing Bang UR and SBH UR

In this section, we derive URs for the Big Bang and SBH applying the GRE.

5.1.1. Big Bang UR

S.W. Hawking and R. Penrose established that the universe originated from a Big Bang
singularity [130, 131]. Subsequent studies have explored the possibility of avoiding this and other
singularities in black holes by incorporating quantum effects [98-129]. A key characteristic of the Big
Bang singularity is a spacetime point of zero volume and infinitely high temperature.

Applying the GRE (15), we derive a relation between the temperature and volume of the Big
Bang

TgVp~TpVp=Tpl3= h2G / Kc? (19)

where T, is the Big Bang temperature, V, itsvolume, and Vp= L} the Planck volume. This

constitutes the Big Bang UR. It implies that the temperature and volume of the Big Bang cannot be
simultaneously determined with arbitrary precision. When h — 0, we obtain

TV~ 0 (20)

Because Tz >0 [133], it follows that V; ~ 0, indicating a singular Big Bang origin when quantum
effects are neglected. This supports the view that the inclusion of quantum mechanics may resolve
the initial singularity.

Substituting a = ckT / 27th [134] into Eq. (19), we obtain

agVg~a,V,=hG / 2mc (21
where a; is the Big Bang acceleration, and a,=y/c/hG the Planck acceleration. It is the UR for
Big Bang acceleration and its volume.

5.1.2. SBH UR

Similarly, for a SBH of mass and volume, we find
MyVy~MpVp=MpL3 =h%G / c* (22)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Where My is the SBH mass, and Vy; its volume. It is the SBH UR, indicating that the mass and
volume of a SBH cannot be simultaneously measured precisely also. When h — 0, we obtain
MyVy~0 (23)
Since My> 0, this implies V,;~0, the volume is zero, suggesting a singularity emerges in the
classical limit. Therefore, we suggest that quantum effects may also prevent the formation of a
singularity in SBH.
Expressing the mass as M =pV, Eq. (22) leads to
M2 / py ~ 102G / c*, pyVE ~1n:G/ c* (24)
where py is the mass density of SBH. These relations describe the uncertainty between the
density and mass or volume of a SBH.

5.2. Power Product Relationship Between Two PQs

In this section, we derive power product relations for the case where n = 2 within the GRE.
Corresponding general formulas are established, leading to the recovery of many fundamental
physical laws, including the Einstein's mass-energy relation, event horizon temperature of a SBH [3],
observed density of dark energy [135, 136], Casimir effect equation, Planck’s blackbody radiation
formula, Stefan— Boltzmann law, and Einstein field equations [138], and so on.

5.2.0. For the GRE (15), when n =2, We Obtain

AT Ay~ ATpAgp (25)
Instructing a;=1, a,=b, A;=A and A,= B, we gain
ABY~ApBB (26)
Especially when b =1, we obtain
A~ ApBp / B (27)
When b =—1, we gain
A~ ApB/ Bp (28)

Therefore, we can determine the power product relationship between two PQs. For example

5.2.1. Assuming that Energy E Has Relations with Mass M Only, We Find
EMb,\_,EPMg = (hCS/G)l/Z(hC/G)a/Z — h(1+b)/2G—(1+b)/2c(5+b)/2 (29)
Above is the general formulae for energy and mass.
5.2.1.1. Ordering 1+b =0, —» b=—1, We Obtain
E~Mc?
That is the Einstein’s mass-energy relation.
5.2.1.2. Instructing 5+b =0, » b=—5,We Have

E~G2M> /h5 2

5.2.1.3. Ordering b =1, We Gain

E~hc? / GM
Substituting E ~«T into above formula, we obtain
T~ hc? / «GM

where T is the temperature. Above is the SBH event horizon temperature formula [3], but it
hasn't1/ 8m.

5.2.2. Supposing That Energy E Has Relations with Frequency w Merely, We Find

EwaEng — h(l—b)/zG—(1+b)/2C5(1+b)/2 (30)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where wp=y/c>/hG is the Planck frequency.

5.2.2.1. Instructing 1+b =0, — b=—1, We Gain
E~hw
Above formula is the light quantum relation.
5.2.2.2. Ordering 1—b =0, —» b =1, We Obtain
w~c5/ GE
Substituting E ~Mc? into above formula, we gain
w ~c®/ GM
where w ~wvg. That is the inverse correlation between high-frequency quasi-periodic oscillation
and black hole mass [139-147].
5.2.2.3. Instructing b =—3, We Have
E~n*Gw?/ > ?
5.2.3. Assuming that Energy E Has Relations with Energy Density o Only, We Find

pr,\,EPp]I; - h(l—zb)/zG—(1+4b)/2C(5+14b)/2 (31)

5.2.3.1. Ordering 1—2b=0, > b =1/ 2, We Obtain
E?~c'?2 / G3p
So the above formula is the relativistic gravitational energy.
5.2.3.2. Instructing 1+4b =0, - b=—1/ 4, We Obtain
E*~h3c3p
That is the relationship between biquadratic quanta energy and its density [139-147].
5.2.3.3. Ordering b=—1/ 2, We Gain
E?~h2Gp / c?
From MV~h?G / c¢*, E =pV and E = Mc?, whereMis the mass of SBH, andVits volume, we obtain
the above formula with square of energy and its density of SBH.

5.2.4. Supposing That Distance R Has Relations with Mass M Merely, We Find

RMbNLng - h(1+b)/2G(1—b)/2c—(3—b)/2 (32)

5.2.4.1. Instructing 1+b =0, » b =—1, We Obtain

R~ GM / ¢?

Above is the radius of event horizon of stationary black holes [131].
5.2.4.2. Ordering 1—b =0, —» b =1, we gain

R~h/ Mc

That is A.H. Compton wavelength formula.
5.2.4.3. Instructing 3—b =0, — b =3, we have

R~n%*/GM3 ?

5.2.4.4. Ordering b =—3, we obtain

R~G2M3 / hcd
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Substituting R = ct into above formula, we gain

t~G*M3 / hetoeM®

Above is the age of SBH [3].

From R~GM / ¢?, we obtain V~R3~G3M3 / c®, substituting t ~G*M?3 / hc*, we gain

V~hGt / c?

That is the relation between the volume of event horizon of stationary black holes and its age.
For the SBH, R=2GM / c?, V=32rG3M?3 / 3c® and t =15360nG?>M? / hc*, we have V = hGt / 1440c2.
5.2.5. Assuming That Energy Density o Has Relations with Distance R Only, We Find

prNplef)=h_(z_b)/zG_(4_b)/2C(14_3b)/2 (33)

5.2.5.1. Instructing 2—b =0, — b =2, We Obtain
p~c*/ GR?

This is the gravitational energy density.

5.2.5.2. Ordering 4—b =0, — b =4, We Gain
p~hc/ R*>R~1/hc/p

where R~ 14 is the length scale associated with dark energy and p~pq4 the observed density of
dark energy [135, 136].
5.2.5.3. Instructing 14—3b =0, > b=14 / 3, We Have

PP ~hiG / R4 72

5.2.5.4. Ordering b = 6, We Obtain
p~h*G / c?R®
From MV~h?G/ c* E =pV, E=Mc? and V~R?, we gain the above formula. That is the energy
density with sixth power radius of SBH.
5.2.6. Supposing That Per Area Force f Has Relations with Distance R Merely, We Find
beprLlf;Fh_(z_b)/zG_(4_b)/zc(14_3b)/2 (34)
where fp= ¢’ / hG? is the Planck per area force.
5.2.6.1. Instructing 4—b =0, — b =4, We Gain
f~hc/R*
That is Casimir effect formula, hasn't —n? / 240.
5.2.6.2. Ordering 2—b =0, — b =2, We Obtain
f~c*/GR? = Fp / R?
where Fp = ¢*/G is the Planck force. It is the relativistic gravitational pressure or holographic
dark energy (HDE) negative pressure [137, 148-152].
5.2.6.3. Instructing 14—3b =0, — b =14 / 3, We Have

FP~h4G / R1* 2

5.2.6.4. Ordering b = 6, We Obtain

f~n?G/ c?R®
From 2.5.4 and p = wp, we gain
p~wh®G / c¢*R®
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That is the pressure p~fin SBH centre.
5.2.7. Assuming that Radiation Density p, Has Relations with Frequency y Only, We Find
pryb,\,prpyll;:h—(1+b)/2G—(3+b)/2C(9+5b)/2 (35)

where p,p=,/c?/hG? is the Planck radiation density, and yp=,/c3/hG the Planck frequency.

5.2.7.1. Instructing 3+b =0, — b =—3, We Obtain
pr~hy? / 3
Comparing M. Planck blackbody radiation formula, it hasn't 87t / (e"/*T —1).

5.2.7.2. Ordering 1+b =0, - b=—1, We Gain

pr—~c?y / G?

5.2.7.3. Instructing 9+5b =0, - b=—9 / 5, We Have

p2~h%y° / G3 ?
5.2.7.4. Ordering b =—5, We Get
pr~h2Gy5 / 8 ?

5.2.8. Supposing That Energy Density p Has Relations with Temperature T Merely, We Find

pTP~ ppTl = h=(=D)/2G=(4+b)/2(14+5b)/2y~b (36)

5.2.8.1. Instructing 4+b = 0, » b =—4, We Obtain

p ~x*T* / h3c3

That is Stefan-Boltzmann law, hasn't =% / 15.
5.2.8.2. Ordering 2—b =0, —» b =2, We Gain

p ~c'? / G32T?

This is the relativistic gravitational energy density with square temperature.
5.2.8.3. Instructing 14+5b =0, - b=—14 / 5, We Obtain

pS~K4T14 / R6G3 ?

5.2.8.4. Ordering b =—2, We Get
p ~c?k?T? / WG
It is the gravitational energy density far from the horizon inside SBH [137].

5.2.9. Assuming That Acceleration a Has Relations With Temperature T Only, We Find

aTb Napr)’= h—(i—b)/zG—(1+b)/2C(7+5b)/2 K—b (37)

5.2.9.1. Instructing 1+b =0, » b=—1, We Gain
a~ckT /h
That is Unruh formula [134], hasn't 1 / 2m.
5.2.9.2. Ordering 1—b =0, — b =1, We Obtain

a~c®/ xGT
That is the relativistic gravitational temperature.
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5.2.9.3. Instructing 7+5b =0, - b=—7/ 5, We Have

b5~Gk’T7 / h® ?

5.2.9.4. Ordering b =—3, We Obtain
a ~Gk3T3 / h%c* ?
5.2.10. Supposing That Entropy Density s Has Relations with Temperature T Merely, We Find
ST~ spTE = h=(-b)/2G~(3+b)/2(9+5b)/2,((1-b) (38)
where sp=,/k?c®/h3G3? is the Planck entropy density.
5.2.10.1. Instructing 3+b =0, — b =—3, We Obtain
s ~k*T3 / h3c®
That is entropy density with cube of temperature [144].
5.2.10.2. Ordering 3—b =0, — b =3, We Have
s~c? / G3*T?
This is the relativistic gravitational entropy density.
5.2.10.3. Instructing 9+5b =0, > b=—9 /5, We Get

sS~T° / 10263 ?

5.2.10.4. Ordering 1—b =0, —» b=1, We Gain

s~c’ / hG?T ?

5.2.10.5. Instructing b =—1, We Obtain
s ~«?c*T / h?G
Above is the entropy density of SBH center [137].

5.2.11. Assuming That Energy Density ¢ Has Relations with Acceleration a Only, We Find

pab ~ ppag =~ @t0/2G-(+a)/2.7(2+a)/2 (39)

5.2.11.1. Instructing 2+b =0, > b= -2, We Obtain
p ~a*/G—a~[Gp

That is the relativistic gravitational acceleration.

5.2.11.2. Ordering 4+b =0, » b= —4, We Gain

p ~ ha*/c’"— a ~ c{/pc3/h
Substituting Unruh formula T = ha/2mck [134] and Stefan-Boltzmann law p=m?k*T*/15h3¢3, we
g
get p=ha*/16m*c’. So it is the quantized acceleration.

5.2.11.3. Instructing b =—6, We Obtain

p ~ h*Ga®/c'* - a ~ c23/pc?/h2G
Takinga ~ ¢?/r (conferto3.4.3)t02.5.4 p ~ h2G/c?R®, wherer ~R, we get the above equation,
therefore it is the acceleration far from the horizon inside SBH.

5.2.12. Assuming that curvature tensor R, has relations with energy-momentum tensor T,, only,
we find

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0626.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 October 2025 d0i:10.20944/preprints202510.0626.v2

12 of 24

R T;IZ.JVNRLL\)PT{J.,VP - h—(1+b)G—(1+2b)C(3+7b) (40)

uv

5.2.12.1. Ordering 1+b =0, - b=—1, We Gain

Ry~ GT,, / c*

Above is Einstein field equation [138], hasn't—Rg,, / 2 and —8m.
5.2.12.2. Instructing 1+2b =0, —» b=—1/ 2, We Obtain

Rz, ~T, /hc?or R,R*"~T,, /hc?

5.2.12.3. Ordering 3+7b=0, > b=—3 /7, We Have

R, ~T3, / h*G?

5.2.13. Supposing that Lagrange Density Function ¢ Has Relations with Electromagnetic Field
tensor F,, Merely, We Find

OFL,~ @pFl,p = h~(+D)G(Z+D) c7+30)gb |y ~(Z+D)/2G=(24b)c7(2+1)/2 (4])
where @p=c’ /hG? is the Planck Lagrange density function, F,= ec® /hG the Planck
electromagnetic field tensor, and e ~+hc.

5.2.13.1. Instructing 2+b =0, — b =—2, We Obtain Only

@~ Ff,~FyFW
Above is electromagnetic Lagrange density function under Lorentz gauge [153], hasn't —1/ 4
and —(9,4")?% / 2.

5.2.14. Assuming that Superfluid Density ny Has Relations with Voltage V' Only, We Find

nsf wansvalg - h—1G—(2+b)/2C(6+5b)/2 (42)
where ngp=c®/hG is the Planck superfluid density, and Vp = ec?/vhG~/c5/G the Planck
voltage.

5.2.14.1. Ordering 2+b =0, —» b =—2, We Obtain

ngs ~V? / hc?
That is ng < (IcRy)?, where V=IcRy, Ic is the critical current intensity of the iron-based
superconductor F,Teys5Se045, Ry the normal state resistance [154].

5.2.14.2. Instructing 6+5b =0, > b=—6 / 5, We Obtain

n~Ve /hG? ?

5.3. Power Product Relationship Between Three PQs

This section extends the analysis to systems of three PQs n = 3 under the GRE framework.
General formulas are formulated and applied to derive multiple canonical equations, such as the
Newton’s law of universal gravitation, Schrodinger equation, Coulomb’s law, Newton’s second law,
Clapeyron equation, power law for superconducting films [155-156], and two expressions for the
critical temperature of LSCO superconductors [157, 158], etc.

5.3.0. Similarly when n =3, We Obtain
Ao A A RS AT @)
Ordering a;=1, a,=b, az=j, A;=A, A,=B, and 4;=C, we give
ABPC/~ApBSC), (44)
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when j=0, Eq. (26) is recovered. Thus we can determine the power product relationship between
three PQs. For example

5.3.1. Assuming That Energy E Has Relations with Mass M and Distance r, We Find

EMbyJ ~p(+b+0)/2G—(1+b=)/2(5+b=3))/2 (45)

5.3.1.1. Instructing 1+b+j=0, and 5+b—3j=0 — b=—2 and j=1, We Obtain

E~GM?/r~GMm /r
Above is Newton's law, hasn't —1.

5.3.1.2. Ordering 1+b—j=0,and 5+b—3j=0 — b =1 and j = 2, We Gain

E ~h? / Mr?

Substituting E—ihd / ot and 1 / r?>— V? into above formula, we obtain
ihoy / ot ~n?*v*y / M

where y is wave function. That is Schrédinger equation, hasn't —1 / 2.

5.3.1.3. Instructing 1+b+j=0,and 1+b—j=0 — b=—1 and j =0, We Obtain

E ~Mc?
Above is Einstein’s mass-energy relation again.

5.3.1.4. Ordering b=—1 and j =2, We Gain

E ~hGM / cr?

From Unruh formula T=2mtha / ck [134], a ~g and g&= GM / r?, we have
T=2thGM / ckr?

So above is the temperature T~E / « in Newtonian attraction, hasn't 2m.

5.3.2. Supposing that energy E has relations with electric charge Q and distance r, we find
EQPr) ~h(+)/2G=(1=D/2(5-3))/2eb ~ (10 +1)/2G=(1=D/2c(5+b-3))/2 (46)
5.3.2.1 Ordering 1+b+j=0,and 1 —=0 —-b=—2and j=1, also 5+b —3j =0, we gain only
E~Q*/r~QQ,/r

That is Coulomb law.

5.3.3. Assuming That Acceleration a Has Relations with Force F and Mass M, We Find

AFD MJ ~h~(1=/2G—(1+2b+))/2 . (7+8b+])/2 (47)

5.3.3.1. Instructing 1—j=0, and 1+2b+j=0 —>b=—1and j=1, also 7+8b+j =0, We Obtain Merely

a~F/M

That is Newton's second law.

Only ordering 1 —j =0, —j=1, we gain
A~ G-+ A+ p=b / o1

when b =—2, we have
a~GF? / Mc*
this is the relativistic gravity acceleration modifier.
5.3.4. Supposing That Acceleration a Has Relations with Mass M and Distance r, We Find

AMP7I ~h=(1=b=D)/2G=(1+b=])/2 (7+b=3))/2 (48)

5.3.4.1. Ordering 1—b—j=0, and 7+b—3j=0 — b=—1and j =2, We Gain
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a~GM/r?
That is Newtonian gravitational acceleration.
5.3.4.2. Instructing 1+b—j=0,and 7+b—3j=0 —» b=2 and j= 3, We Have
a ~h? / M?r3—r~3hZ / bM?
Above is hn=3\/9[(n - %)ﬂh/m]2 / 8g [159] probably, where h,~r is the height of the nth energy

level, m~M the neutron mass and g~a the Earth's gravitational acceleration.

5.3.4.3. Ordering 1—b—j=0,and 1+b—j=0—b=0and j=1, We Obtain
a~c?/r
From pge=3cfc*Mj L2, p = wp, F~pl?,a ~F / M, Mc* =pV and V ~I?, we gain
a ~ 3wg.c? / 8nlL
where r~L. Above is the acceleration of HDE, hasn't 3w,, / 8m.
5.3.5. Assuming That Pressure p Has Relations with Volume V and Temperature T, We Find
PVOTI ~ ppVBTI=h=(-3b=1)/2G=(4=3b+)/2(14=9b+5)/2,~] (49)
5.3.5.1. Instructing 2—3b—j=0,and 4—3b+j=0— b =1 and j=—1, also 14—9b+5j =0, we obtain
only
pV~«xT
That is Clapeyron equation, hasn't WN, / M, where W is the gaseous mass, N, the Avogadro
constant and M the mass of gaseous mole molecule.
5.3.6. Assuming That Thickness d Has Relations with Temperature T and Resistance R, We Find
dTYRI ~ LPle);R{):h(ub)/zG(1—b)/zc—(3—5b+2j)/2K—b (50)
where Rp=h / e?~1 / cis the Planck resistance.
5.3.6.1. Ordering 1—b =0 — b =1, We Obtain
dT~hc~ Dx~1R~J
Above is the superconducting thin film power law dT.= ARg®? [155-156], where T, is critical
temperature, Rs sheet resistance, A and B are fitting parameters. When j =1,we get dT~hx 'R~ ™.

5.3.6.2. Instructing 1—b =0, and 3—5b+2j=0 - b=1 and j=1, We Gain Also

dT~hx 1R

5.3.6.3. Ordering 1+b =0 and 3—5b-+2j=0— b =—1 and j =—4, We Obtain
d~ GxTR* ?
5.3.7. Supposing that Temperature T Has Relations with Superfluid Density p; and Mass m, We
Find
TplmJ ~TpplpMi=h(1-20+1)/2G=(1+2b+))/2(5+6b+))/2)~1 (51)

where pgp=c® / hG is the Planck superfluid density.

5.3.7.1. Ordering 1+2b+j=0—j=—(1+2b), We Get
Tf\,h—zbC2(1+b)K—1ps—bm(1+2b)

(1) Instructing 1+b = 0—b =—1, we obtain
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T~h2%p; / xm

That is the Uemura's law T.xng, / m* [160] or one of the two formulas of critical temperature of
LSCO [157, 158] and its superfluid density T. = T, + ep , , where ng is the densityof
superconductingelectrons, m* the electron effective mass, T,=(7.0+0.1)K and «=0.37+0.02 [161].

(2) Ordering 1+2b=0—b=—1/ 2,wegain

T~he/ps /

Above is the other one of the two formulas of LSCO [157, 158] T.=y./ps0, where y=(4.2+0.5) K'/2
[161].

5.3.7.2. Ordering 1—2b+j=0and 5+6b+j=0, > b=—1/2,j=—2, We Gain
T~Gm?/ps / «?

5.3.8. Assuming that Conductivity p; Has Relations with Temperature T and Carrier Density n., We
Find

pRTbné NpRPTFz): nlc'P=h(1+b—3j)/zG—(1—b—3j)/2C—(s—5b—9j)/2K—b (52)

where pgpp=y/hG/c® is the Planck conductivity, ncp= (y/c3/hG)? the Planck carrier density.

5.3.8.1. Ordering 1—b—3j=0, and 5—5b—9 =N — b =(2—N) / 2 and j= N / 6, Where N is a Fitted
Number, We Gain

pRT(Z—N)/an/eNh(Z—N)/ZC—N/ZK—(Z—N)/Z

(1) Instructing N= 6, we obtain

pr~K*T? / h2c3n,~AT?

where A~«? / h%c3n¢, that is the relation of the conductivity and temperature of monocrystalline
Sry_4La,TiO5 [162].

(2) Ordering N= 4, we obtain

pr KT / hczné/3 ?
(3) Instructing N= 3, we obtain
p& ~xT / hcdne ?

5.3.8.2. Instructing 1+b—3j=0, and 5—5b—9j=N — b =(2—N) / 8 and j = (10—N) / 24, We Gain
pRT(Z—N)/Sn{(:lo_N)/Z‘l',\,G—(Z—N)/SC—N/ZK—(Z—N)/S

Ordering N= 4, we obtain
pE~GxT / c®ng ?

5.3.9. Supposing that Force F Has Relations with Hamiltonian Function H and Curvature k, We
Find
FHP k) ~FpHBK)=h~0-D/2G=C+b+))/2(8+50+3))/2 (53)
where Hp=,/hc5/G is the Planck Hamiltonian function and kp=,/c3/hG the Planck curvature.

5.3.9.1. Instructing b—j=0, and 2+b+j=0 — b=—1 and j=—1, also 8+5b+3j =0, We Obtain
Merely

F~Hk
That is the generalized CFL dP / dt=—2Hkn [163], where P is the momentum, n the local unit
normal vector, and F~dP / dt, hasn't —2n.

5.4. Power Product Relationship Between Four PQs

Here, we consider power product relations involving four PQs n =4 via the GRE. This approach
yields the centrifugal force formula, among other relations, demonstrating the applicability of the
framework to more complex physical systems.
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5.4.0. Similarly when n = 4, We Obtain
AT AT AT AL~ AT AR AL AL (54)
Instructing by=1, b,=b, by=j, b3=1, A;=A, A,=B, A;=Cand A,= D, we gain
ABPCID'~ApBECLD, (55)

when [= 0, Eq. (44) is recovered. Therefore, we can determine the power product relationship
between four PQs. For example

5.4.1. Supposing that Force F has Relations with Mass M, Speed v and Distance r, We Find

EMP i pl ~pb+D/2G-@+b=1)/2 (8+b+2j-31)/2 (56)

5.4.1.1. Ordering b+1=0, 2+b—1=0 and 8+b+2j—31=0

—b=—1,j=—2and =1, we obtain
F~Mv?/r

Above is the centrifugal force formula.
And so on.

6. Conclusion

In this paper, we have systematically investigated dimensional URs applying dimensional
analysis. The main results are summarized as follows

(1) The standard form of URs were identified, wherein products of PQs on the left-hand side are
equated to power products of fundamental constants such as the reduced Planck constant h,
gravitational constant G, speed of light in vacuum c and Boltzmann constant k are on right hand.
These power products of physical constants which are rewritten appear.

(2) General Expression for URs was derived showing that the product of two or n non-
commutative dimensional PQs is equivalent to a power product of h, G, ¢, k and elementary charge
e.

(3) Basic Relationship was demonstrated that every dimensional PQ corresponds to a Planck
scale, expressible as a power product of the same fundamental constants. That is PQs and Planck
scales having the supersymmetry [98-104].

(4) Planck Scales including Planck length Lp, Planck time tp, Planck mass Mp, Planck
temperature Tp, elementary charge Q.(or Planck charge), Planck energy Ep, Planck momentum
P, Planck curvature tensor R,,p, Planck energy density pp, Planck pressure pp, Planck energy-
momentum tensor T,p etc. were rederived. Many PQs of identical dimension share the same Planck
scale such as pp, pp and T,p.

(5) Planck scales were classified into two categories. First is the basic Planck scale such as Lp, tp,
Mp, Tp and Q., derived one for example Ep, Pp, pp, Pp, Rup, Tuwp, and other scales such as Planck
wave function yp. The second is the Femi-Planck scale its exponent being half integer such as Lp, tp,
Mp, Tp, Ep, Pp, etc, the Bose-Planck scale whose exponents are integers such as Qe, pp, pPp, Ruve, Tuves
etc, and Other-Planck scale such as Planck wave function ysp.

(6) The Planck scale for any PQ was shown to be expressible as a power product of the basic
Planck scales Lp, tp, Mp, Tp and Q..

(7) The GRE was proposed and proved, which states that a power product of non-commutative
PQs equals the one of their corresponding Planck scales. This GRE was used to verify the URs in
Section 1, explaining the absence of G in some relations through dimensional reduction.

(8) Applying the GRE, some significant URs were derived: a Big Bang UR between temperature
Tz and volume Vp was, suggesting the avoidance of the initial singularity with quantum gravity
effects; a related UR between acceleration az and volume Vg; a SBH UR between mass My and
volume Vy, also indicating the absence of a singularity under quantum effects; URs between the
density py of a SBH and its mass My or volume Vj.
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(9) The GRE provides a unified framework for a broad class of dimensional URs. It reproduces
known URs as special cases. Note that dimensional arguments alone cannot determine numerical
prefactors or fully capture dimensionless relations.

(10) Monomial scaling relations between two PQs were derived for the case n =2 within the GRE
framework. In particular, direct or inverse proportionality between two quantities arises when their
exponents equal 1 or -1, respectively.

(11) General formulae were obtained by introducing physical assumptions relating energy to
mass, energy to frequency, energy density to distance, force per unit area to distance, radiation
density to temperature, energy density to temperature, acceleration to temperature, entropy density
to temperature, energy density to acceleration, curvature tensor to the energy-momentum tensor,
Lagrange density function to the electromagnetic field tensor, superfluid density to voltage, and so
on.

(12) Numerous fundamental physical equations were recovered without prefactors, including
the Einstein’s mass— energy relation, event horizon temperature of a SBH [3], light quantum relation,
inverse correlation between high-frequency quasi-periodic oscillation and black hole mass [139-147],
relativistic gravitational energy, biquadratic relation between photon energy and energy density
[139-147], event horizon radius of stationary black holes [131], A.H. Compton wavelength formula,
age of a SBH [3], observed density of dark energy [135, 136], Casimir effect equation, relativistic
gravitational pressure or negative pressure in HDE [137, 148-152], Planck blackbody radiation law,
Stefan-Boltzmann law, relativistic gravitational energy density with square temperature, Unruh
formula [134], relativistic gravitational temperature, cubic relation between entropy density and
temperature [144], relativistic gravitational entropy density, relativistic gravitational acceleration,
quantized acceleration, Einstein field equations [138], electromagnetic Lagrange density function
under the Lorentz gauge [153], relation of quasiparticle character and superfluid density of
FeTeo555¢045 [154], and so on.

(13) Several new relations were identified, including those between the square of energy and its
density in SBH, the volume of event horizon of stationary black holes and its age, the energy density
and the sixth power of the radius in SBH, the central pressure inside an SBH, the gravitational energy
density far within the horizon, and the entropy density at the SBH center [137], the acceleration far
from the horizon inside SBH.

(14) The analysis was extended to systems of three and four PQs, corresponding to n =3 or 4 in
the GRE, respectively.

(15) Additional general formulae were formulated by postulating relations among energy, mass
and distance; energy, charge and distance; acceleration, force and mass; acceleration, mass and
distance; pressure, volume and temperature; thickness, temperature and resistance; temperature,
superfluid density and mass; conductivity, temperature and carrier density; force, Hamiltonian
function and curvature, etc.

(16) Many well-known factor-free equations were reproduced, including Newton's law,
Schrodinger equation, the temperature in Newtonian attraction, Coulomb law, Newton's second law,
Newtonian gravitational acceleration, height of the nth energy level of neutrons in the Earth's
gravitational field [159], acceleration of HDE, Clapeyron equation, superconducting thin film power
law [155-156], Uemura's law [160], two formulas of critical temperature of LSCO [157, 158], relation
of the conductivity and temperature of monocrystalline Sr;_,La,TiO; [162], generalized CFL [163],
and centrifugal force formula.

(17) Certain derived relations currently lack a clear physical interpretation.

(18) Three methods are used to determine the relationships of three PQs, one is the exponential
equation of G and ¢, h and c or h and G being equal to zero; another is the one of G being equal to
zero, then consider the circumstances of h and c; the third is the one of G being equal to zero and
one of c being equal to a fitted number, because the exponential equation of c is not necessarily equal
to zero.
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(19) The GRE proves to be a powerful tool for determining power product relationships among
two, three, and four PQs, although it does not predict numerical prefactors. This approach offers a
unified and conceptually significant method for deriving scaling laws across multiple domains of
physics.
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