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Abstract 

We propose a generalized relational expression (GRE) through dimensional analysis, which serves 

to unify a broad class of dimensional uncertainty relations (URs). We derive a general form of UR 

wherein the product of two or more non-commutative physical quantities (PQs) of specific 

dimensions is equated to a power product of the fundamental constants: the reduced Planck constant 

ħ, gravitational constant G, speed of light in vacuum c, Boltzmann constant k, and elementary charge 

e. Our analysis reveals that every dimensioned PQ is associated with a characteristic Planck scale. 

PQs sharing the identical dimensions consequently share identical Planck scales. These Planck scales 

are categorized into two primary types: one comprising the basic and derived Planck scales, the other 

including Fermi-Planck, Bose-Planck, and other scales. We demonstrate that the Planck scale 

corresponding to any PQ can be expressed as a power product of the Planck length, Planck time, 

Planck mass, Planck temperature, and the elementary charge (or Planck charge). The GRE is then 

established by equating the power product of non-commutative PQs to the one of their corresponding 

Planck scales. Applying the GRE, we derive a Big Bang UR relating the temperature and volume of 

the Big Bang, and a Schwarzschild black hole (SBH) UR connecting the mass and volume of a SBH. 

These URs, when quantum effects are incorporated, suggest no singularities in both the Big Bang and 

SBH scenarios. The functional relationships between PQs are inherently governed by the GRE. By 

selecting sets of two, three, and four PQs within the GRE framework, we obtain corresponding 

general formulae. Under specific constraints, such as setting the exponents of the fundamental 

constants to zero or to empirically fitted values, these general formulae reduce to numerous famous 

factorless equations. These include the Einstein's mass-energy relation, the SBH horizon temperature 

formula, Casimir effect equation, Planck blackbody radiation law, Stefan-Boltzmann law, Einstein 

field equations, Newton's law of gravitation, Schrödinger equation, Coulomb's law, Newton's second 

law, acceleration of holographic dark energy (HDE), Clapeyron equation, superconducting thin-film 

power law, and formulas for the critical temperature of LSCO cuprates, among others. Furthermore, 

several novel relationships are proposed, such as those connecting the square of the SBH energy to 

its density, sixth power of the SBH radius to its energy density, and SBH pressure to its central 

entropy density. We conclude that the proposed GRE is a generalized, insightful, and potent tool 

with significant theoretical utility and broad applicability in theoretical physics. 

Keywords: generalized relational expression (GRE); Heisenberg uncertainty principle; dimensional 

analysis; power product; Planck scale; physical quantity (PQ) 

PACS: 03.65.Ta, 03.67.Lx, 04.60.-m 

 

1. Introduction 

The Heisenberg uncertainty principle [1] has led to significant advances in applications [2-4], 

theoretical developments [5-30], and experimental verifications [31-40]. These contributions have 

reinforced its foundational status and expanded its conceptual scope. A variety of uncertainty 

relations (URs) have since been proposed 
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ΔpΔr≥ħ [1]; ΔEΔt≥ħ [1]; Δx>ħ／Δp+αLP
2 Δp／ħ [41-50]; ∆R∆S≥|<ψ|[R,S]|ψ>|／2 [51, 52]; H(R) + 

H(Q) ≥ log21／c [53-63]; S(Q|B) + S(R|B) ≥ log21／c + S(A|B) [64-74]; δt= βtP
2/3

𝑡1/3 [75]; η／s ≥ 4πħ／κ 

[76]; ΔTΔX～ LS
2～～ LP

2 ～／c  [72-74]; δxδyδt～ LP
3 ～／c [75-80]; 𝐿𝜇𝜈～～ √LP𝐿  [81-87];  

ε(Q)η(P)＋ε(Q)σ(P)＋σ(Q)η(P)≥ħ／2 [35, 36]; (δt)(δ𝑟)3 ≥ π𝑟2LP
2／c [88], etc.  

where Δp is the momentum fluctuation, Δr the position momentum, ħ the reduced Planck 

constant; ΔE the energy fluctuation, Δt the time fluctuation; Δx the position momentum, αa 

dimensionless constant; LP =√ħG/c3 Planck length,G the gravitational constant, c the speed of light in 

vacuum;∆R and ∆S the standard deviation of two arbitrary observables R and S; δt the time 

fluctuation, β an order one constant, tP =√ħG/c5 Planck time, t the time; η the ratio of shear viscosity 

of a given fluid perfect, s its volume density of entropy, κ the Boltzmann constant; ΔT the time-like, 

ΔX its space-like, LS  the string scale; δx, δy, δt are the position fluctuation and time fluctuation 

separately; 𝐿𝜇𝜈 the transverse length, L the radial length; Q the position of a mass, ε(Q) the root-

mean-square error, P its momentum, η(P) the root-mean-square disturbance, σ(P) the standard 

deviation; δt and δr the sever space-time fluctuations of the constituents of the system at small scales, 

and r the radius of globular computer. 

Observing these URs, we can classify them to four types 

I URs 

ΔpΔr≥ħ; ΔEΔt≥ ħ; ∆R∆S≥|<ψ|[R,S]|ψ>|／2; δt = β tP
2/3

𝑡1/3 ; η／s ≥ 4πħ／κ; 

ΔTΔX～LS
2～LP

2／c;𝐿𝜇𝜈～√LP𝐿; δxδyδt～LP
3／c;(δt)(δ𝑟)3 ≥π𝑟2LP

2／c; 

II URs 

ε(Q)η(P)＋ε(Q)σ(P)＋σ(Q)η(P)≥ħ／2; 

III URs 

Δx>ħ／Δp+αLP
2 Δp／ħ;  

IV URs (dimensionless) 

H(R) + H(Q) ≥ log21／c; S(Q|B) + S(R|B) ≥ log21／c + S(A|B). 

Etc. 

We only research the I URs, II URs and III URs with dimensions. Two natural questions arise: 

(i) Why does the gravitational constant G not appear on the right-hand side of certain URs? (ii) Can 

these relations be unified within a single framework? In this work, we address these questions by 

demonstrating that the absence of G results from appropriate dimensional reduction, and we 

propose a unified formulation in the form of a generalized relational expression (GRE). Regarding 

the origin and development of Planck units，such as the Planck length, Planck time, Planck mass 

MP =√ħc/G , Planck energyEP = √ħc5/G  and Planck temperature TP  =√ħc5/κ2G , please refer to the 

literature [89-96]. 

This paper is organized as follows. In Sec. 2, the general form of URs for two and n physical 

quantities (PQs) is derived, and the underlying foundational relationship is established. Sec. 3 

presents the concept of the Planck scale and provides a classification scheme for different types of 

Planck scales. In Sec. 4, it is shown that the Planck scale corresponding to any PQ can be expressed 

as a power product of the basic Planck scales; the GRE is formulated and rigorously proven, and the 

URs introduced in Sec. 1 are subsequently verified. Sec. 5 applies the GRE to deduce several 

significant results, including the Big Bang UR, the Schwarzschild black hole (SBH) UR, and a number 

of well-known factor-free equations, such as Einstein's mass-energy relation, the SBH horizon 

temperature formula, and the Casimir effect equation, among others. Additionally, several new 

physical relationships are proposed. Finally, concluding remarks and a summary are provided in Sec. 

6. 

2. General Expression of URs and Basic Relationship 

In this section, we discover the normal form of URs; derive the general expression of URs for 

two PQs, basic relationship, and general expression of URs for n PQs. 

2.1. General Expression of URs for two PQs 
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For the I URs and II URs (III URs can be regarded as the recombination of I and II), we discover 

the physical constants such as ħ, G, c and κ on the right hand, and the PQs on left hand. We rewrite 

them as 

ΔpΔr≥ ħ ; ΔEΔt≥ ħ ;δt／β 𝑡1/3 = tP
2/3 = ħ1/3G1/3c−5/3 ; η／4πs ≥ħ κ−1 ; ΔTΔX～ LS

2～～ LP
2 ～／c = 

ħGc−4;𝐿𝜇𝜈／√𝐿～√LP=ħ1/4G1/4c−3/4; 

Δxδyδt～LP
3／c =ħ3/2G3/2c−11/2;(δt)(δ𝑟)3／π𝑟2 ≥LP

2／c =ħGc−4, 

2[ε(Q)η(P)＋ε(Q)σ(P)＋σ(Q)η(P) ] ≥ħ; 

Etc.  

Therefore, the right-hand side of such relations naturally takes the form of a power product of 

fundamental physical constants. This represents their canonical form. Considering two non-

commutative dimensional PQs, we derive the general form of the URs 

AB～ħ𝑥G𝑦c𝑧κ𝑤e𝑢                                            (1) 

Where A and B are non-commutative PQs, x, y, z, w and u the unknown number, and e the 

elementary charge. Applying the dimensional analysis (here we use the LMTΘQ units [97]1 ), the 

dimensions of A and B are expressed as 

[A]=[L]𝛼1[M]𝛽1[T]𝛾1[Θ]𝛿1[Q]𝜀1, [B]=[L]𝛼2[M]𝛽2[T]𝛾2[Θ]𝛿2[Q]𝜀2       (2) 

where L, M, T, Θ and Q are the dimensions of length, mass, time, temperature and electric charge 

separately, 𝛼1 , 𝛼2 , 𝛽1 , 𝛽2 , 𝛾1 , 𝛾2 , 𝛿1 , 𝛿2 , 𝜀1 and 𝜀2  the known real number. The dimensions of 

ħ𝑥G𝑦c𝑧κ𝑤e𝑢 is 

[ħ𝑥G𝑦c𝑧κ𝑤e𝑢] ={[L2][M][T−1]}𝑥{[L3][M−1][T−2]}𝑦·{[L][T−1]}𝑧{[L2][M][T−2][Θ−1]}𝑤{[Q]}𝑢 (3) 

Then we obtain 

[L]𝛼1[M]𝛽1[T]𝛾1[Θ]𝛿1[Q]𝜀1[L]𝛼2[M]𝛽2[T]𝛾2[Θ]𝛿2[Q]𝜀2= {[L2][M][T−1]}𝑥{[L3][M−1][T−2]}𝑦 

·{[L][T−1]}𝑧{[L2][M][T−2][Θ−1]}𝑤{[Q]}𝑢     (4) 

Solving the Eq. (4), we gain 

x = [(𝛼1＋𝛼2)＋(𝛽1＋𝛽2)＋(𝛾1＋𝛾2)＋(𝛿1＋𝛿2)]／2, 

y = [(𝛼1＋𝛼2)－(𝛽1＋𝛽2)＋(𝛾1＋𝛾2)－(𝛿1＋𝛿2)]／2, 

z = －[3(𝛼1＋𝛼2)－(𝛽1＋𝛽2)＋5(𝛾1＋𝛾2)－5(𝛿1＋𝛿2)]／2, 

w = －(𝛿1＋𝛿2), u = (𝜀1＋𝜀2)                                 (5) 

Thus we find the general expression of URs for two PQs 

AB～[ħ((𝛼1+ 𝛼2)+ (𝛽1+ 𝛽2)+(𝛾1+𝛾2)+(𝛿1+ 𝛿2))]
1
2 · [G((𝛼1+ 𝛼2)−(𝛽1+ 𝛽2)+(𝛾1+𝛾2)−(𝛿1+ 𝛿2))]

1
2 

· [c−(3(𝛼1+ 𝛼2)−(𝛽1+ 𝛽2)+5(𝛾1+𝛾2)−5(𝛿1+ 𝛿2))]
1
2 · κ−(𝛿1+𝛿2)e(𝜀1+𝜀2)           (6) 

This indicates that the product of two non-commutative dimensional PQs is equivalent to a 

power product of the reduced Planck constant, gravitational constant, speed of light, Boltzmann 

constant, and elementary charge. 

2.2. Basic Relationship 

Assuming 𝛼1 =𝛼2 =𝛼 , 𝛽1 = 𝛽2 = 𝛽 , 𝛾1 = 𝛾2 = 𝛾 , 𝛿1 = 𝛿2 = 𝛿 , and 𝜀1 = 𝜀2 = 𝜀  in the general expression of 

URs (6), that is A and B having the identical dimensions 

[A]=[B]=[L]𝛼[M]𝛽[T]𝛾[Θ]𝛿[Q]𝜀                                 (7) 

We obtain 

ħ(𝛼+𝛽+𝛾+𝛿)G(𝛼−𝛽+𝛾−𝛿)c−(3𝛼−𝛽+5𝛾−5𝛿)κ−2𝛿e2𝜀 =  APBP = AP
2 = BP

2   (8) 

where AP and BPindicatethe corresponding Planck scale of A and B separately. Here we assume 

the Planck scales being identical because of their identical dimensions. Extracting the square root, we 

find the basic relationship 

A～AP=[ħ(𝛼+𝛽+𝛾+𝛿)G(𝛼−𝛽+𝛾−𝛿)c−(3𝛼−𝛽+5𝛾−5𝛿)κ−2𝛿e2𝜀]
1
2            (9) 

This relationship indicates that any PQ with dimension has a corresponding Planck scale, 

expressible as a power product of ħ, G, c, κ and e, that is PQs and Planck scales having the 

supersymmetry [98-104]. 

 
1Chien Wei-Zang used L, M, T, θ and Q indicated the dimensions of length, mass, time, temperature and electric charge separately in 

[97]. 
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If AP≠BP, we assumeAP=λBP, where λ is a fitted coefficient. Substituting it and Eq. (7) into Eq. (6), 

we get 

                                         ħ(𝛼+𝛽+𝛾+𝛿)G(𝛼−𝛽+𝛾−𝛿)c−(3𝛼−𝛽+5𝛾−5𝛿)κ−2𝛿e2𝜀 = APBP = λAP
2  

Extracting the square root, we obtain  

A～AP=[ħ(𝛼+𝛽+𝛾+𝛿)G(𝛼−𝛽+𝛾−𝛿)c−(3𝛼−𝛽+5𝛾−5𝛿)κ−2𝛿e2𝜀/λ]
1
2～[ħ(𝛼+𝛽+𝛾+𝛿)G(𝛼−𝛽+𝛾−𝛿)c−(3𝛼−𝛽+5𝛾−5𝛿)κ−2𝛿e2𝜀]

1
2   

That is Eq. (9) omitting the coefficient. Same deduction applies to Eq. (13). 

2.3. General Expression of URs for n PQs 

Extending the analysis to n non-commutative dimensional PQs, we write 

∏ 𝐴𝑖
𝑛
𝑖=1 ～ħ𝑥G𝑦c𝑧κ𝑤e𝑢, i = 1, 2, 3…n                         (10) 

where 𝐴𝑖is a PQ,𝐴𝑖 and 𝐴𝑖+1 are non-commutative. The dimensions of ∏ 𝐴𝑖
𝑛
𝑖=1  are 

[∏ 𝐴𝑖
𝑛
𝑖=1 ]=[L]∑ 𝛼𝑖

𝑛
𝑖 [M]∑ 𝛽𝑖

𝑛
𝑖 [T]∑ 𝛾𝑖

𝑛
𝑖 [Θ]∑ 𝛿𝑖

𝑛
𝑖 [Q]∑ 𝜀𝑖

𝑛
𝑖                    (11) 

where 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝛿𝑖 and 𝜀𝑖 are known real number. Applying the dimensional analysis again, 

we find the general expression for n PQs 

∏ 𝐴𝑖 
𝑛
𝑖=1 ～[ħ

((∑ 𝛼𝑖
𝑛
𝑖 )+(∑ 𝛽𝑖

𝑛
𝑖 )+(∑ 𝛾𝑖

𝑛
𝑖 )+(∑ 𝛿i

𝑛
𝑖 ))

]
1
2 · [G

((∑ 𝛼𝑖
𝑛
𝑖 )−(∑ 𝛽𝑖

𝑛
𝑖 )+(∑ 𝛾𝑖

𝑛
𝑖 )−(∑ 𝛿𝑖

𝑛
𝑖 ))

]
1
2 

· [c
−(3(∑ 𝛼𝑖

𝑛
𝑖 )−(∑ 𝛽𝑖

𝑛
𝑖 )+5(∑ 𝛾𝑖

𝑛
𝑖 )−5(∑ 𝛿𝑖

𝑛
𝑖 ))

]
1
2 · κ−(∑ 𝛿𝑖

𝑛
𝑖 )e(∑ 𝜀𝑖

𝑛
𝑖 ) (12) 

For n = 2, it reduces to Eq. (6). Ordering 𝛼𝑖 = 𝛼𝑖+1 = 𝛼 , 𝛽𝑖 = 𝛽𝑖+1 = 𝛽 , 𝛾𝑖 = 𝛾𝑖+1 = 𝛾 , 𝛿𝑖  = 𝛿𝑖+1 = 𝛿  and 

𝜀𝑖= 𝜀𝑖+1= 𝜀 in Eq. (12), 𝐴𝑖 and 𝐴𝑖+1 having identical dimensions, we obtain 

[ħ𝑛(𝛼+𝛽+𝛾+𝛿)]
1
2[G𝑛(𝛼−𝛽+𝛾−𝛿)]

1
2[c−𝑛(3𝛼−𝛽+5𝛾−5𝛿)]

1
2κ−𝑛𝛿e𝑛𝜀～AP

𝑛       (13) 

Extracting the nth-root, we gain Eq. (9) again. 

3. Planck Scale 

In this section, we derive various Planck scales and present a systematic classification. 

3.1. Basic Planck Scale 

By assigning specific values to the dimensional exponents in Eq. (7) and applying Eq. (9), the 

basic Planck scales are obtained as follows 

Ordering α = 1, β = γ = δ = ε = 0, we obtain Planck length immediately 

LP=√ħG/c3 

Instructing γ =1, α = β = δ = ε = 0, obtain Planck time 

tP=√ħG/c5 

Ordering β = 1, α = γ = δ = ε = 0, obtain Planck mass 

MP =√ħc/G 

Instructing δ = 1, α = β = γ = ε = 0, obtain Planck temperature 

TP=√ħc5/κ2G 

Ordering ε = 1, α = β = γ = δ = 0, obtain elementary charge  

Qe= e 

If the dimension of electric charge is expressed as [Q]2 = [L]3 [M] [T]−2 , the Planck charge is 

obtained as 

QP=√ħc～ e 

These constitute the basic Planck scales [88]. 

3.2. Derived Planck Scale 

Using Eqs. (7) and (9), additional derived Planck scales [88] can be obtained. For example  

Planck energy EP with [EP] = [L]2[M][T]−2 

EP= √ħc5/G 

Planck momentum PP with [PP] = [L][M][T]−1 

PP= √ħc3/G 

Planck curvature tensor R𝜇𝜈P with [R𝜇𝜈P] = [L]−2 

R𝜇𝜈P= c3∕ħG 
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Etc. 

Many PQs share the same dimensions and therefore correspond to the same Planck scale. For 

instance 

Planck energy density ρP, Planck pressure pP, Planck energy-momentum tensor T𝜇𝜈P all have 

dimensions [L]−1[M][T]−2, and share the Planck scale 

ρP = pP = T𝜇𝜈P = c7/ħG2 

And so on. 

3.3. Classifications 

All the Planck scales can be categorized into two types. The first includes the basic and derived 

Planck scales [88]. The second category comprises 

The Femi-Planck scale, with half-integer exponents, such as LP, tP, MP, TP, EP, PP etc;  

Bose-Planck scale, with integer exponents, such as Qe, ρP, pP, R𝜇𝜈P, T𝜇𝜈P, etc;  

Other-Planck scale, such as the Planck wave function ψP, [ψP] = [L]−3/2, ψP = (ħG/c3)−3/4 

4. GRE 

In this section, we demonstrate that the basic relation (9) can be expressed as a power product 

of basic Planck scales. We then introduce and prove the GRE, and use it to verify the URs presented 

in Sec. 1. 

4.1. Proof of Basic Relationship 

Basic relationship (9) can be rewritten as 

AP = LP
𝛼 MP

𝛽
tP

𝛾
TP

𝛿Qe
𝜀                                           (14) 

From Eq. (9), we have 

AP = [ħ𝛼G𝛼c−3𝛼]
1
2[ħ𝛽G−𝛽c𝛽]

1
2[ħ𝛾G𝛾c−5𝛾]

1
2[ħ𝛿G−𝛿c5𝛿]

1
2κ−𝛿e𝜀 = 

[√ħG/c3]𝛼[√ħc/G]𝛽[√ħG/c5]𝛾[√ħc5/κ2G]𝛿e𝜀=LP
𝛼 MP

𝛽
tP

𝛾
TP

𝛿QP
𝜀  

Therefore, the Planck scale corresponding to any PQ can be expressed as a power product of the 

Planck length, Planck time, Planck mass, Planck temperature, and elementary charge. 

4.2. GRE 

Considering all the non-commutative PQs with dimension, we find the GRE 

∏ 𝐴𝑖
𝑎𝑖𝑛

𝑖=1 ～∏ A𝑖P
𝑎𝑖𝑛

𝑖=1 ;  i = 1, 2, 3…n                           (15) 

where 𝐴𝑖 is a PQ, 𝐴𝑖  and 𝐴𝑖+1  are non-commutative, 𝑎𝑖  the real number, and A𝑖P  the 

corresponding Planck scale of 𝐴𝑖. This indicates that the power product of non-commutative PQs is 

equivalent to the one of their respective Planck scales.  

4.3. Proving GRE 

The proof follows the same dimensional analysis approach as in Section 2.3. For n non-

commutative PQs raised to powers 𝑎𝑖 power, we write 

∏ 𝐴𝑖
𝑎𝑖𝑛

𝑖=1 ～ħ𝑥G𝑦c𝑧κ𝑤e𝑢                                      (16) 

The dimensions of ∏ 𝐴𝑖
𝑎𝑖𝑛

𝑖=1  are expressed as 

[∏ 𝐴𝑖
𝑎𝑖𝑛

𝑖=1 ]=[L]∑ 𝑎𝑖𝛼𝑖
𝑛
𝑖 [M]∑ 𝑎𝑖𝛽𝑖

𝑛
𝑖 [T]∑ 𝑎𝑖𝛾𝑖

𝑛
𝑖 [Θ]∑ 𝑎𝑖𝛿𝑖

𝑛
𝑖 [Q]∑ 𝑎𝑖𝜀𝑖

𝑛
𝑖            (17) 

Using the dimensional analysis also, we obtain the general form 

∏ 𝐴𝑖
𝑎𝑖𝑛

𝑖=1 ～[ħ
((∑ 𝑎𝑖𝛼𝑖

𝑛
𝑖 )+(∑ 𝑎𝑖𝛽𝑖

𝑛
𝑖 )+(∑ 𝑎𝑖𝛾𝑖

𝑛
𝑖 )+(∑ 𝑎𝑖𝛿𝑖

𝑛
𝑖 ))

]
1
2 · [G

((∑ 𝑎𝑖𝛼𝑖
𝑛
𝑖 )−(∑ 𝑎𝑖𝛽𝑖

𝑛
𝑖 )+(∑ 𝑎𝑖𝛾𝑖

𝑛
𝑖 )−(∑ 𝑎𝑖𝛿𝑖

𝑛
𝑖 ))

]
1
2 

· [c
−(3(∑ 𝑎𝑖𝛼𝑖

𝑛
𝑖 )−(∑ 𝑎𝑖𝛽𝑖

𝑛
𝑖 )+5(∑ 𝑎𝑖𝛾𝑖

𝑛
𝑖 )−5(∑ 𝑎𝑖𝛿𝑖

𝑛
𝑖 ))

]
1
2 · κ−(∑ 𝑎𝑖𝛿𝑖

𝑛
𝑖 )e(∑ 𝑎𝑖𝜀𝑖

𝑛
i ) 

=[√ħG/c3]∑ 𝑎𝑖𝛼𝑖
𝑛
𝑖 [√ħc/G]∑ 𝑎𝑖𝛽𝑖

𝑛
𝑖 [√ħG/c5]∑ 𝑎𝑖𝛾𝑖

𝑛
𝑖 · [√ħc5/κ2G]∑ 𝑎𝑖𝛿𝑖

𝑛
𝑖 e∑ 𝑎𝑖𝜀𝑖

𝑛
𝑖 = LP

∑ 𝑎𝑖𝛼𝑖
𝑛
𝑖 MP

∑ 𝑎𝑖𝛽𝑖
𝑛
𝑖 tP

∑ 𝑎𝑖𝛾𝑖
𝑛
𝑖 TP

∑ 𝑎𝑖𝛿𝑖
𝑛
𝑖 Qe

∑ 𝑎𝑖𝜀𝑖
𝑛
𝑖  

= ∏ LP
𝑎𝑖𝛼𝑖MP

𝑎𝑖𝛽𝑖tP
𝑎𝑖𝛾𝑖TP

𝑎𝑖𝛿𝑖Qe
𝑎𝑖𝜀𝑖𝑛

𝑖=1 = ∏ A𝑖P
𝑎𝑖𝑛

𝑖=1   (18) 

where A𝑖P=LP
𝛼𝑖MP

𝛽𝑖tP
𝛾𝑖TP

𝛿𝑖Qe
𝜀𝑖, which confirms the GRE. 

4.4. Proving URs 
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Applying the GRE (15), we can prove the URs in Sec.1. 

ΔpΔr～ PPLP = √ħc3/G√ħG/c3 = ħ; ΔEΔt～ EPtP = √ħc5/G√ħG/c5  = ħ; δt／ 𝑡1/3 ～ tP ／ tP
1/3

= tP
2/3

; 

η／s～ηP／sP=√c9/ħG3／√c9κ2/ħ3G3 = ħ／κ; ΔTΔX～tPLP～ħG／c4= LP
2 ／c～LS

2 ; 𝐿𝜇𝜈／√𝐿～LP／√LP=√LP; 

δxδyδt～LP
2 tP= LP

3 ／c; (δt)(δ𝑟)3／𝑟2～tPLP
3 ／LP

2 = LP
2 ／c; ε(Q)η(P)＋ε(Q)σ(P)＋σ(Q)η(P)～√ħG/c3√ħc3/G= ħ, 

etc. 

where ηP =√c9/ħG3 is the Planck ratio of shear viscosity of a given fluid perfect, and sP=√c9κ2/ħ3G3 

its Planck volume density of entropy (from basic relationship (9)). This demonstrates that the 

gravitational constant G does not appear on the right-hand side of certain URs due to appropriate 

dimensional reduction. 

5. Application 

A central goal in theoretical physics is to develop a universal framework from which established 

physical laws can be derived. The Standard Model [105], represents a major achievement in this 

direction, successfully unifying the electromagnetic, weak, and strong interactions. With the recent 

experimental confirmation of the Higgs boson [106-112], all 62 predicted elementary particles have 

been observed. However, the model does not incorporate gravity. Numerous beyond Standard 

Model theories, including supersymmetry [98-104], supergravity [98-104], superstring/M-theory [41-

50], loop quantum gravity [44, 45, 47, 48], the causal set approach [113-117], the holographic principle 

[118], the asymptotic safety scenario [119], causal dynamical triangulation [120-123], an exceptionally 

simple theory of everything [124], unified field equations [125, 126], SQS theory [127], Quantum Field 

Theory of Gravity and Hyperunified Field Theory [128], have been proposed to describe all four 

fundamental forces. Nonetheless, experimental validation remains elusive [129]. 

5.1. Bing Bang UR and SBH UR 

In this section, we derive URs for the Big Bang and SBH applying the GRE. 

5.1.1. Big Bang UR 

S.W. Hawking and R. Penrose established that the universe originated from a Big Bang 

singularity [130, 131]. Subsequent studies have explored the possibility of avoiding this and other 

singularities in black holes by incorporating quantum effects [98-129]. A key characteristic of the Big 

Bang singularity is a spacetime point of zero volume and infinitely high temperature. 

Applying the GRE (15), we derive a relation between the temperature and volume of the Big 

Bang 

𝑇𝐵𝑉𝐵～TPVP = TPLP
3 = ħ2G／κc2                             (19) 

where 𝑇𝐵  is the Big Bang temperature, 𝑉𝐵  itsvolume, and VP = LP
3   the Planck volume. This 

constitutes the Big Bang UR. It implies that the temperature and volume of the Big Bang cannot be 

simultaneously determined with arbitrary precision. When ħ → 0, we obtain 

𝑇𝐵𝑉𝐵～ 0                                                 (20) 

Because 𝑇𝐵 > 0 [133], it follows that 𝑉𝐵 ～ 0, indicating a singular Big Bang origin when quantum 

effects are neglected. This supports the view that the inclusion of quantum mechanics may resolve 

the initial singularity.  

Substituting a = cκT／2πħ [134] into Eq. (19), we obtain 

𝑎𝐵𝑉𝐵～𝑎pVp= ħG／2πc                                     (21) 

where 𝑎𝐵 is the Big Bang acceleration, and 𝑎p=√c7/ħG the Planck acceleration. It is the UR for 

Big Bang acceleration and its volume. 

5.1.2. SBH UR 

Similarly, for a SBH of mass and volume, we find 

𝑀𝐻𝑉𝐻～MPVP = MPLP
3  = ħ2G／c4                            (22) 
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Where 𝑀𝐻 is the SBH mass, and 𝑉𝐻 its volume. It is the SBH UR, indicating that the mass and 

volume of a SBH cannot be simultaneously measured precisely also. When ħ → 0, we obtain 

𝑀𝐻𝑉𝐻～ 0                                                (23) 

Since 𝑀𝐻 > 0, this implies 𝑉𝐻～～0, the volume is zero, suggesting a singularity emerges in the 

classical limit. Therefore, we suggest that quantum effects may also prevent the formation of a 

singularity in SBH.  

Expressing the mass as M =ρV, Eq. (22) leads to  

𝑀𝐻
2／𝜌𝐻 ～ ħ2G／c4, 𝜌𝐻𝑉𝐻

2 ～ ħ2G／c4                      (24) 

where 𝜌𝐻  is the mass density of SBH. These relations describe the uncertainty between the 

density and mass or volume of a SBH. 

5.2. Power Product Relationship Between Two PQs 

In this section, we derive power product relations for the case where n = 2 within the GRE. 

Corresponding general formulas are established, leading to the recovery of many fundamental 

physical laws, including the Einstein's mass-energy relation, event horizon temperature of a SBH [3], 

observed density of dark energy [135, 136], Casimir effect equation, Planck’s blackbody radiation 

formula, Stefan– Boltzmann law, and Einstein field equations [138], and so on. 

5.2.0. For the GRE (15), when n = 2, We Obtain 

𝐴1
𝑎1𝐴2

𝑎2～ A1P
𝑎1 A2P

𝑎2                                            (25) 

Instructing 𝑎1= 1, 𝑎2 = b, 𝐴1= A and 𝐴2= B, we gain 

A𝐵𝑏～APBP
𝑏                                                (26) 

Especially when b = 1, we obtain 

A～ APBP／B                                              (27) 

When b =－1, we gain 

A～ APB／BP                                              (28) 

Therefore, we can determine the power product relationship between two PQs. For example 

5.2.1. Assuming that Energy E Has Relations with Mass M Only, We Find 

E𝑀𝑏～EPMP
𝑏 = (ħc5/G)1/2(ħc/G)a/2 = ħ(1+𝑏)/2G−(1+𝑏)/2c(5+𝑏)/2     (29) 

Above is the general formulae for energy and mass. 

5.2.1.1. Ordering 1＋b = 0, → b =－1, We Obtain 

E～𝑀c2 

That is the Einstein’s mass-energy relation. 

5.2.1.2. Instructing 5＋b = 0, → b =－5,We Have 

E～G2𝑀5／ħ5 ? 

5.2.1.3. Ordering b = 1, We Gain 

E～ħc3／GM 

Substituting E ～κT into above formula, we obtain 

T～ ħc3／κGM 

where T is the temperature. Above is the SBH event horizon temperature formula [3], but it 

hasn't 1／8π. 

5.2.2. Supposing That Energy E Has Relations with Frequency ω Merely, We Find  

E𝜔𝑏～EPωP
𝑏 = ħ(1−𝑏)/2G−(1+𝑏)/2c5(1+𝑏)/2                      (30) 
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where 𝜔P=√c5/ħG is the Planck frequency.  

5.2.2.1. Instructing 1＋b = 0, → b =－1, We Gain 

E～ħω 

Above formula is the light quantum relation. 

5.2.2.2. Ordering 1－b = 0, → b = 1, We Obtain 

ω～c5／GE  

Substituting E ～Mc2 into above formula, we gain 

ω ～c3／GM 

where ω ～𝑣G. That is the inverse correlation between high-frequency quasi-periodic oscillation 

and black hole mass [139-147]. 

5.2.2.3. Instructing b =－3, We Have 

E～ħ2G𝜔3／c5 ? 

5.2.3. Assuming that Energy E Has Relations with Energy Density ρ Only, We Find 

E𝜌𝑏～EPρP
𝑏 = ħ(1−2𝑏)/2G−(1+4𝑏)/2c(5+14𝑏)/2                     (31) 

5.2.3.1. Ordering 1－2b = 0, → b = 1／2, We Obtain 

𝐸2～c12／G3𝜌 

So the above formula is the relativistic gravitational energy. 

5.2.3.2. Instructing 1＋4b = 0, → b =－1／4, We Obtain 

𝐸4～ħ3c3𝜌 

That is the relationship between biquadratic quanta energy and its density [139-147]. 

5.2.3.3. Ordering b =－1／2, We Gain 

𝐸2～ħ2G𝜌／c2 

From 𝑀𝑉～ħ2G／c4, E =𝜌V and E = Mc2, where𝑀is the mass of SBH, and𝑉its volume, we obtain 

the above formula with square of energy and its density of SBH. 

5.2.4. Supposing That Distance R Has Relations with Mass M Merely, We Find  

R𝑀𝑏～LPMP
𝑏 = ħ(1+𝑏)/2G(1−𝑏)/2c−(3−𝑏)/2                       (32) 

5.2.4.1. Instructing 1＋b = 0, → b =－1, We Obtain 

R～ GM／c2 

Above is the radius of event horizon of stationary black holes [131]. 

5.2.4.2. Ordering 1－b = 0, → b = 1, we gain 

R～ħ／Mc 

That is A.H. Compton wavelength formula. 

5.2.4.3. Instructing 3－b = 0, → b = 3, we have 

R～ħ2／G𝑀3 ? 

5.2.4.4. Ordering b =－3, we obtain 

R～G2𝑀3／ħc3 
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Substituting R = ct into above formula, we gain 

t～G2𝑀3／ħc4∝𝑀3 

Above is the age of SBH [3]. 

From R～GM／c2, we obtain V～𝑅3～G3𝑀3／c6, substituting t ～G2𝑀3／ħc4, we gain 

V～ħG𝑡／c2 

That is the relation between the volume of event horizon of stationary black holes and its age. 

For the SBH, R= 2GM／c2, V=32G3𝑀3／3c6 and t ≈15360G2𝑀3／ħc4, we have V ≈ ħG𝑡／1440c2. 

5.2.5. Assuming That Energy Density ρ Has Relations with Distance R Only, We Find 

𝜌𝑅𝑏～ρPLP 
𝑏 = ħ−(2−𝑏)/2G−(4−𝑏)/2c(14−3𝑏)/2                      (33) 

5.2.5.1. Instructing 2－b = 0, → b = 2, We Obtain 

ρ～c4／G𝑅2 

This is the gravitational energy density. 

5.2.5.2. Ordering 4－b = 0, → b = 4, We Gain 

ρ～ħc／𝑅4→R～√ħc／𝜌
4  

where R～𝜆d is the length scale associated with dark energy and ρ～𝜌d the observed density of 

dark energy [135, 136]. 

5.2.5.3. Instructing 14－3b = 0, → b = 14／3, We Have 

𝜌3～ħ4G／𝑅14 ? 

5.2.5.4. Ordering b = 6, We Obtain 

ρ～ħ2G／c2𝑅6 

From 𝑀𝑉～ħ2G／c4, E = 𝜌V, E = Mc2 and V～𝑅3, we gain the above formula. That is the energy 

density with sixth power radius of SBH. 

5.2.6. Supposing That Per Area Force f Has Relations with Distance R Merely, We Find 

𝑓𝑅𝑏～fPLP
𝑏 = ħ−(2−𝑏)/2G−(4−𝑏)/2c(14−3𝑏)/2                      (34) 

where fP= c7／ħG2 is the Planck per area force.  

5.2.6.1. Instructing 4－b = 0, → b = 4, We Gain 

f～ħc／𝑅4 

That is Casimir effect formula, hasn't －π2／240. 

5.2.6.2. Ordering 2－b = 0, → b = 2, We Obtain 

f ～c4／G𝑅2 = FP／𝑅2 

where FP = c4/G is the Planck force. It is the relativistic gravitational pressure or holographic 

dark energy (HDE) negative pressure [137, 148-152]. 

5.2.6.3. Instructing 14－3b = 0, → b =14／3, We Have 

𝑓3～ħ4G／𝑅14 ? 

5.2.6.4. Ordering b = 6, We Obtain 

f ～ħ2G／c2𝑅6 

From 2.5.4 and p = ωρ, we gain 

p～ωħ2G／c2𝑅6 
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That is the pressure p～f in SBH centre. 

5.2.7. Assuming that Radiation Density 𝜌𝑟 Has Relations with Frequency 𝛾 Only, We Find 

𝜌𝑟𝛾𝑏～ρ𝑟PγP
𝑏 = ħ−(1+𝑏)/2G−(3+𝑏)/2c(9+5𝑏)/2                     (35) 

where ρ𝑟P=√c9/ħG3 is the Planck radiation density, and γP=√c5/ħG the Planck frequency. 

5.2.7.1. Instructing 3＋b = 0, → b =－3, We Obtain 

𝜌𝑟～ħ𝛾3／c3 

Comparing M. Planck blackbody radiation formula, it hasn't 8π／(eħ𝛾/κ𝑇－1). 

5.2.7.2. Ordering 1＋b = 0, → b =－1, We Gain 

𝜌𝑟～c2𝛾／G ? 

5.2.7.3. Instructing 9＋5b = 0, → b =－9／5, We Have 

𝜌𝑟
5～ħ2𝛾9／G3 ?  

5.2.7.4. Ordering b =－5, We Get 

𝜌𝑟～ħ2G𝛾5／c8 ? 

5.2.8. Supposing That Energy Density 𝜌 Has Relations with Temperature T Merely, We Find 

𝜌𝑇𝑏～𝜌PTP
𝑏 = ħ−(2−𝑏)/2G−(4+𝑏)/2c(14+5𝑏)/2κ−𝑏                   (36) 

5.2.8.1. Instructing 4＋b = 0, → b =－4, We Obtain 

𝜌 ～κ4𝑇4／ħ3c3 

That is Stefan-Boltzmann law, hasn't π2／15. 

5.2.8.2. Ordering 2－b = 0, → b = 2, We Gain 

𝜌 ～c12／G3κ2𝑇2  

This is the relativistic gravitational energy density with square temperature. 

5.2.8.3. Instructing 14＋5b = 0, → b =－14／5, We Obtain 

𝜌5～κ14𝑇14／ħ6G3 ? 

5.2.8.4. Ordering b =－2, We Get 

𝜌 ～c2κ2𝑇2／ħ2G  

It is the gravitational energy density far from the horizon inside SBH [137]. 

5.2.9. Assuming That Acceleration a Has Relations With Temperature T Only, We Find 

𝑎𝑇𝑏～𝑎PTP 
𝑏 = ħ−(1−𝑏)/2G−(1+𝑏)/2c(7+5𝑏)/2κ−𝑏                    (37) 

5.2.9.1. Instructing 1＋b = 0, → b =－1, We Gain 

a～cκT／ħ 

That is Unruh formula [134], hasn't 1／2π. 

5.2.9.2. Ordering 1－b = 0, → b = 1, We Obtain 

a～c6／κGT  

That is the relativistic gravitational temperature. 
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5.2.9.3. Instructing 7＋5b = 0, → b =－7／5, We Have 

𝑏5～Gκ7𝑇7／ħ6 ? 

5.2.9.4. Ordering b =－3, We Obtain 

a ～Gκ3𝑇3／ħ2c4 ? 

5.2.10. Supposing That Entropy Density s Has Relations with Temperature T Merely, We Find 

𝑠𝑇𝑏～𝑠PTP
𝑏 = ħ−(3−𝑏)/2G−(3+𝑏)/2c(9+5𝑏)/2κ(1−𝑏)                  (38) 

where 𝑠P=√κ2c9/ħ3G3 is the Planck entropy density.  

5.2.10.1. Instructing 3＋b = 0, → b =－3, We Obtain 

s ～κ4𝑇3／ħ3c3 

That is entropy density with cube of temperature [144]. 

5.2.10.2. Ordering 3－b = 0, → b = 3, We Have 

s～c12／G3κ2𝑇3  

This is the relativistic gravitational entropy density. 

5.2.10.3. Instructing 9＋5b = 0, → b =－9／5, We Get 

𝑠5～κ14𝑇9／ħ12G3 ? 

5.2.10.4. Ordering 1－b = 0, → b = 1, We Gain 

s～c7／ħG2𝑇 ? 

5.2.10.5. Instructing b =－1, We Obtain 

s ～κ2c2𝑇／ħ2G  

Above is the entropy density of SBH center [137]. 

5.2.11. Assuming That Energy Density ρ Has Relations with Acceleration a Only, We Find 

𝜌𝑎𝑏 ～ ρP𝑎P
𝑏 = ħ−(2+𝛼)/2G−(4+𝛼)/2c7(2+𝛼)/2                   (39) 

5.2.11.1. Instructing 2+b = 0, → b = －2, We Obtain 

ρ ～ 𝑎2/G → a ～√G𝜌  

That is the relativistic gravitational acceleration. 

5.2.11.2. Ordering 4+b = 0, → b = －4, We Gain  

ρ ～ ħ𝑎4/c7→ a ～ c√𝜌c3/ħ
4   

Substituting Unruh formula T = ħ𝑎/2πcκ [134] and Stefan-Boltzmann law 𝜌= π2κ4𝑇4/15ħ3c3, we 

get ρ = ħ𝑎4/16π4c7. So it is the quantized acceleration. 

5.2.11.3. Instructing b =－6, We Obtain  

ρ ～ ħ2G𝑎6/c14 → a ～ c2 √𝜌c2/ħ2G
6  

Taking a ～ c2/r  (confer to 3.4.3) to 2.5.4 ρ ～ ħ2G/c2𝑅6, where r ～R, we get the above equation, 

therefore it is the acceleration far from the horizon inside SBH. 

5.2.12. Assuming that curvature tensor 𝑅μν has relations with energy-momentum tensor 𝑇μν only, 

we find 
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𝑅𝜇𝜈𝑇𝜇𝜈
𝑏 ～RμνPTμνP 

𝑏 = ħ−(1+𝑏)G−(1+2𝑏)c(3+7𝑏)                     (40) 

5.2.12.1. Ordering 1＋b = 0, → b =－1, We Gain 

𝑅μν～ G𝑇μν／c4 

Above is Einstein field equation [138], hasn't－R𝑔μν／2 and －8π. 

5.2.12.2. Instructing 1＋2b = 0, → b =－1／2, We Obtain 

𝑅𝜇𝜈
2 ～𝑇μν／ħc ? or 𝑅μν𝑅～𝑇μν／ħc ? 

5.2.12.3. Ordering 3＋7b = 0, → b =－3／7, We Have 

𝑅𝜇𝜈
7 ～𝑇𝜇𝜈

3 ／ħ4G ?  

5.2.13. Supposing that Lagrange Density Function φ Has Relations with Electromagnetic Field 

tensor 𝐹μν Merely, We Find 

𝜑𝐹𝜇𝜈
𝑏 ～φPFμνP 

𝑏 = ħ−(1+𝑏)G−(2+𝑏)c(7+3𝑏)e𝑏～ħ−(2+𝑏)/2G−(2+𝑏)c7(2+𝑏)/2 (41) 

where φP = c7～／ħ G2  is the Planck Lagrange density function, 𝐹μν = e c3～／ħG the Planck 

electromagnetic field tensor, and e ～√ħc. 

5.2.13.1. Instructing 2＋b = 0, → b =－2, We Obtain Only 

φ～𝐹𝜇𝜈
2 ～𝐹μν𝐹μν 

Above is electromagnetic Lagrange density function under Lorentz gauge [153], hasn't －1／4 

and －(∂μ𝐴μ)2／2. 

5.2.14. Assuming that Superfluid Density 𝑛sf  Has Relations with Voltage 𝑉 Only, We Find 

𝑛𝑠𝑓 𝑉
𝑏～nsfPVP

𝑏 = ħ−1G−(2+𝑏)/2c(6+5𝑏)/2                         (42) 

where nsfP = c3／ħG  is the Planck superfluid density, and VP  = ec2/√ħG～～√c5/G  the Planck 

voltage. 

5.2.14.1. Ordering 2＋b = 0, → b =－2, We Obtain 

𝑛sf ～𝑉2／ħc2 

That is 𝑛sf  ∝ (𝐼C𝑅N)2 , where 𝑉 = 𝐼C𝑅N , 𝐼C  is the critical current intensity of the iron-based 

superconductor FeTe0.55Se0.45, 𝑅N the normal state resistance [154]. 

5.2.14.2. Instructing 6＋5b = 0, → b =－6／5, We Obtain 

𝑛sf
5 ～𝑉6／ħG2 ? 

5.3. Power Product Relationship Between Three PQs 

This section extends the analysis to systems of three PQs n = 3 under the GRE framework. 

General formulas are formulated and applied to derive multiple canonical equations, such as the 

Newton’s law of universal gravitation, Schrödinger equation, Coulomb’s law, Newton’s second law, 

Clapeyron equation, power law for superconducting films [155-156], and two expressions for the 

critical temperature of LSCO superconductors [157, 158], etc. 

5.3.0. Similarly when n = 3, We Obtain 

𝐴1
𝑎1𝐴2

𝑎2𝐴3
𝑎3～A1P

𝑎1 A2P
𝑎2 A3P

𝑎3                                       (43) 

Ordering 𝑎1= 1, 𝑎2 = b, 𝑎3 = j, 𝐴1= A, 𝐴2= B, and 𝐴3= C, we give 

A𝐵𝑏𝐶𝑗～APBP
𝑏CP

𝑗
                                            (44) 
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when j = 0, Eq. (26) is recovered. Thus we can determine the power product relationship between 

three PQs. For example 

5.3.1. Assuming That Energy E Has Relations with Mass M and Distance r, We Find 

E𝑀𝑏𝑟𝑗～ħ(1+𝑏+𝑗)/2G−(1+𝑏−𝑗)/2c(5+𝑏−3𝑗)/2                       (45) 

5.3.1.1. Instructing 1＋b＋j = 0, and 5＋b－3j = 0 → b =－2 and j = 1, We Obtain 

E ～ G𝑀2／r～GMm／r  

Above is Newton's law, hasn't －1. 

5.3.1.2. Ordering 1＋b－j = 0, and 5＋b－3j = 0 → b = 1 and j = 2, We Gain 

E ～ħ2／M𝑟2 

Substituting E→iħ∂／∂t and 1／𝑟2→ ∇2 into above formula, we obtain 

iħ∂𝜓／∂t ～ħ2∇2𝜓／M 

where 𝜓 is wave function. That is Schrödinger equation, hasn't －1／2. 

5.3.1.3. Instructing 1＋b＋j = 0, and 1＋b－j = 0 → b =－1 and j = 0, We Obtain 

E ～𝑀c2 

Above is Einstein’s mass-energy relation again. 

5.3.1.4. Ordering b =－1 and j =2, We Gain 

E ～ħG𝑀／c𝑟2 

From Unruh formula T= 2πħa／cκ [134], a ～g and g= GM／𝑟2, we have 

T=2πħG𝑀／cκ𝑟2 

So above is the temperature T～E／κ in Newtonian attraction, hasn't 2π. 

5.3.2. Supposing that energy E has relations with electric charge Q and distance r, we find 

E𝑄𝑏𝑟𝑗～ħ(1+𝑗)/2G−(1−𝑗)/2c(5−3𝑗)/2e𝑏～ħ(1+𝑏+𝑗)/2G−(1−𝑗)/2c(5+𝑏−3𝑗)/2 (46) 

5.3.2.1 Ordering 1＋b＋j = 0, and 1－j = 0 → b =－2 and j = 1, also 5＋b－3j = 0, we gain only 

E ～𝑄2／r～𝑄1𝑄2／r 

That is Coulomb law. 

5.3.3. Assuming That Acceleration a Has Relations with Force F and Mass M, We Find 

a𝐹𝑏𝑀𝑗～ħ−(1−𝑗)/2G−(1+2𝑏+𝑗)/2c(7+8𝑏+𝑗)/2                       (47) 

5.3.3.1. Instructing 1－j = 0, and 1＋2b＋j = 0 → b =－1 and j = 1, also 7＋8b＋j = 0, We Obtain Merely 

a ～F／M  

That is Newton's second law. 

Only ordering 1－j = 0, →j = 1, we gain 

a～G−(1+𝑏)c4(1+𝑏)𝐹−𝑏／𝑀 

when b =－2, we have 

a～G𝐹2／𝑀c4  

this is the relativistic gravity acceleration modifier. 

5.3.4. Supposing That Acceleration a Has Relations with Mass M and Distance r, We Find 

a𝑀𝑏𝑟𝑗～ħ−(1−𝑏−𝑗)/2G−(1+𝑏−𝑗)/2c(7+𝑏−3𝑗)/2                      (48) 

5.3.4.1. Ordering 1－b－j = 0, and 7＋b－3j = 0 → b =－1 and j = 2, We Gain 
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a ～ GM／𝑟2 

That is Newtonian gravitational acceleration. 

5.3.4.2. Instructing 1＋b－j = 0, and 7＋b－3j = 0 → b = 2 and j = 3, We Have 

a ～ħ2／𝑀2𝑟3→r～√ħ2／𝑏𝑀23
 

Above is ℎ𝑛=√9[(𝑛 −
1

4
)πħ/𝑚]2／8𝑔

3
 [159] probably, where ℎ𝑛～r is the height of the nth energy 

level, m～M the neutron mass and g～a the Earth's gravitational acceleration. 

5.3.4.3. Ordering 1－b－j = 0, and 1＋b－j = 0 → b = 0 and j = 1, We Obtain 

a ～c2／r 

From 𝜌𝑑𝑒= 3𝑐𝐿
2c3Mpl

2 𝐿−2, p = ωρ, F～p𝐿2, a ～F／M, Mc2 = 𝜌V and V ～𝐿3, we gain 

a ～ 3𝑤𝑑𝑒c2／8πL 

where r～L. Above is the acceleration of HDE, hasn't 3𝑤𝑑𝑒／8π. 

5.3.5. Assuming That Pressure p Has Relations with Volume V and Temperature T, We Find 

p𝑉𝑏𝑇𝑗～ pPVP
𝑏TP

𝑗
=ħ−(2−3𝑏−𝑗)/2G−(4−3𝑏+𝑗)/2c(14−9𝑏+5𝑗)/2κ−𝑗       (49) 

5.3.5.1. Instructing 2－3b－j = 0, and 4－3b＋j = 0 → b = 1 and j =－1, also 14－9b＋5j = 0, we obtain 

only 

pV～κT 

That is Clapeyron equation, hasn't W𝑁A／M, where W is the gaseous mass, 𝑁A the Avogadro 

constant and M the mass of gaseous mole molecule. 

5.3.6. Assuming That Thickness d Has Relations with Temperature T and Resistance R, We Find 

d𝑇𝑏𝑅𝑗～ LPTP
𝑏RP

𝑗
=ħ(1+𝑏)/2G(1−𝑏)/2c−(3−5𝑏+2𝑗)/2κ−𝑏              (50) 

where RP= ħ／e2～1／c is the Planck resistance.  

5.3.6.1. Ordering 1－b = 0 → b = 1, We Obtain 

dT～ħc(1－𝑗)κ−1𝑅−𝑗 

Above is the superconducting thin film power law 𝑑𝑇c = A𝑅S
−𝐵  [155-156], where 𝑇c  is critical 

temperature, 𝑅S sheet resistance, A and B are fitting parameters. When j = 1,we get dT～ħκ−1𝑅−1. 

5.3.6.2. Instructing 1－b = 0, and 3－5b＋2j = 0 → b = 1 and j = 1, We Gain Also 

dT～ħκ−1𝑅−1 

5.3.6.3. Ordering 1＋b = 0 and 3－5b＋2j = 0→ b =－1 and j =－4, We Obtain 

𝑑～ Gκ𝑇𝑅4 ? 

5.3.7. Supposing that Temperature T Has Relations with Superfluid Density 𝜌𝑠 and Mass 𝑚, We 

Find 

T𝜌s
𝑏𝑚𝑗～TPρsP

𝑏 MP
𝑗=ħ(1−2𝑏+𝑗)/2G−(1+2𝑏+𝑗)/2c(5+6𝑏+𝑗)/2κ−1          (51) 

where ρsP=c3／ħG is the Planck superfluid density. 

5.3.7.1. Ordering 1＋2b＋j = 0→j =－(1＋2b), We Get 

T～ħ−2𝑏c2(1+𝑏)κ−1𝜌s
−𝑏𝑚(1＋2𝑏) 

(1) Instructing 1＋b = 0→b =－1, we obtain 
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T～ħ2𝜌𝑠／κ𝑚 

That is the Uemura's law 𝑇c∝𝑛𝑠𝑂／𝑚∗ [160] or one of the two formulas of critical temperature of 

LSCO [157, 158] and its superfluid density 𝑇c = 𝑇0～＋ 𝛼𝜌𝑠0 , where 𝑛𝑠𝑂  is the densityof 

superconductingelectrons, 𝑚∗ the electron effective mass, 𝑇0= (7.0±0.1)K and 𝛼= 0.37±0.02 [161]. 

(2) Ordering 1＋2b = 0→b =－1／2,wegain 

T～ħc√𝜌𝑠／κ 

Above is the other one of the two formulas of LSCO [157, 158] 𝑇c=𝛾√𝜌𝑠𝑂, where 𝛾= (4.2±0.5) K1/2 

[161]. 

5.3.7.2. Ordering 1－2b＋j = 0 and 5＋6b＋j = 0, → b =－1／2, j =－2, We Gain 

T～G𝑚2√𝜌𝑠／κ ? 

5.3.8. Assuming that Conductivity 𝜌𝑅  Has Relations with Temperature T and Carrier Density 𝑛𝐶, We 

Find 

𝜌𝑅𝑇𝑏𝑛𝐶
𝑗 ～ρRPTP

𝑏nCP
𝑗 =ħ(1+𝑏−3𝑗)/2G−(1−𝑏−3𝑗)/2c−(5−5𝑏−9𝑗)/2κ−𝑏      (52) 

where ρRP=√ħG/c5 is the Planck conductivity, nCP= (√c3/ħG)3 the Planck carrier density.  

5.3.8.1. Ordering 1－b－3j = 0, and 5－5b－9j = N → b =(2－N)／2 and j = N／6, Where N is a Fitted 

Number, We Gain 

𝜌𝑅𝑇(2−𝑁)/2𝑛𝐶
𝑁/6～ħ(2−𝑁)/2c−𝑁/2κ−(2−𝑁)/2 

(1) Instructing N= 6, we obtain 

𝜌𝑅～κ2𝑇2／ħ2c3𝑛𝐶～𝐴𝑇2 

where A～κ2／ħ2c3𝑛𝐶, that is the relation of the conductivity and temperature of monocrystalline 

Sr1−xLaxTiO3 [162]. 

(2) Ordering N= 4, we obtain 

𝜌𝑅～κ𝑇／ħc2𝑛𝐶
2/3 ?                    

(3) Instructing N= 3, we obtain 

𝜌𝑅
2 ～κ𝑇／ħc3𝑛𝐶 ?                     

5.3.8.2. Instructing 1＋b－3j = 0, and 5－5b－9j = N → b =(2－N)／8 and j = (10－N)／24, We Gain 

𝜌𝑅𝑇(2−𝑁)/8𝑛𝐶
(10−𝑁)/24～G−(2−𝑁)/8c−𝑁/2κ−(2−𝑁)/8 

Ordering N= 4, we obtain 

𝜌𝑅
4～Gκ𝑇／c8𝑛𝐶 ?   

5.3.9. Supposing that Force F Has Relations with Hamiltonian Function H and Curvature 𝑘, We 

Find  

F𝐻𝑏𝑘𝑗～FPHP
𝑏kP

𝑗 =ħ−(𝑏−𝑗)/2G−(2+𝑏+𝑗)/2c(8+5𝑏+3𝑗)/2               (53) 

where HP=√ħc5/G is the Planck Hamiltonian function and kP=√c3/ħG the Planck curvature. 

5.3.9.1. Instructing b－j = 0, and 2＋b＋j = 0 → b =－1 and j =－1, also 8＋5b＋3j = 0, We Obtain 

Merely 

F～H𝑘 

That is the generalized CFL 𝑑𝑃／𝑑𝑡=－2H𝑘𝑛 [163], where P is the momentum, n the local unit 

normal vector, and F～𝑑𝑃／𝑑𝑡, hasn't －2n. 

5.4. Power Product Relationship Between Four PQs 

Here, we consider power product relations involving four PQs n = 4 via the GRE. This approach 

yields the centrifugal force formula, among other relations, demonstrating the applicability of the 

framework to more complex physical systems. 
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5.4.0. Similarly when n = 4, We Obtain 

𝐴1
𝑎1𝐴2

𝑎2𝐴3
𝑎3𝐴4

𝑎4～A1P
𝑎1 A2P

𝑎2 A3P
𝑎3 A4P

𝑎4                                 (54) 

Instructing 𝑏1= 1, 𝑏2 = b, 𝑏3 = j, 𝑏3 = l, 𝐴1= A, 𝐴2= B, 𝐴3= C and 𝐴4= D, we gain 

A𝐵𝑏𝐶𝑗𝐷𝑙～APBP
𝑏CP

𝑗
DP

𝑙                                        (55) 

when l= 0, Eq. (44) is recovered. Therefore, we can determine the power product relationship 

between four PQs. For example 

5.4.1. Supposing that Force F has Relations with Mass M, Speed 𝑣 and Distance r, We Find 

F𝑀𝑏𝑣𝑗𝑟𝑙～ħ(𝑏+𝑙)/2G−(2+𝑏−𝑙)/2c(8+𝑏+2𝑗−3𝑙)/2                     (56) 

5.4.1.1. Ordering b＋l = 0, 2＋b－l = 0 and 8＋b＋2j－3l = 0 

→ b =－1, j =－2 and l = 1, we obtain 

F～M𝑣2／r 

Above is the centrifugal force formula.  

And so on. 

6. Conclusion 

In this paper, we have systematically investigated dimensional URs applying dimensional 

analysis. The main results are summarized as follows 

(1) The standard form of URs were identified, wherein products of PQs on the left-hand side are 

equated to power products of fundamental constants such as the reduced Planck constant ħ, 

gravitational constant G, speed of light in vacuum c and Boltzmann constant κ are on right hand. 

These power products of physical constants which are rewritten appear. 

(2) General Expression for URs was derived showing that the product of two or n non-

commutative dimensional PQs is equivalent to a power product of ħ, G, c, κ and elementary charge 

e. 

(3) Basic Relationship was demonstrated that every dimensional PQ corresponds to a Planck 

scale, expressible as a power product of the same fundamental constants. That is PQs and Planck 

scales having the supersymmetry [98-104]. 

(4) Planck Scales including Planck length LP , Planck time tP , Planck mass MP , Planck 

temperature TP , elementary charge Qe (or Planck charge), Planck energy EP , Planck momentum 

PP ,Planck curvature tensor RμνP , Planck energy density ρP , Planck pressure pP , Planck energy-

momentum tensor TμνP etc. were rederived. Many PQs of identical dimension share the same Planck 

scale such as ρP, pP and TμνP. 

(5) Planck scales were classified into two categories. First is the basic Planck scale such as LP, tP, 

MP, TP and Qe, derived one for example EP, PP, ρP, pP, RμνP, TμνP, and other scales such as Planck 

wave function ψP. The second is the Femi-Planck scale its exponent being half integer such as LP, tP, 

MP, TP, EP, PP, etc, the Bose-Planck scale whose exponents are integers such as Qe, ρP, pP, RμνP, TμνP, 

etc, and Other-Planck scale such as Planck wave function ψP. 

(6) The Planck scale for any PQ was shown to be expressible as a power product of the basic 

Planck scales LP, tP, MP, TP and Qe. 

(7) The GRE was proposed and proved, which states that a power product of non-commutative 

PQs equals the one of their corresponding Planck scales. This GRE was used to verify the URs in 

Section 1, explaining the absence of G in some relations through dimensional reduction. 

(8) Applying the GRE, some significant URs were derived: a Big Bang UR between temperature 

𝑇𝐵  and volume 𝑉𝐵  was, suggesting the avoidance of the initial singularity with quantum gravity 

effects; a related UR between acceleration 𝑎𝐵  and volume 𝑉𝐵 ; a SBH UR between mass 𝑀𝐻  and 

volume 𝑉𝐻 , also indicating the absence of a singularity under quantum effects; URs between the 

density 𝜌𝐻 of a SBH and its mass 𝑀𝐻 or volume 𝑉𝐻. 
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(9) The GRE provides a unified framework for a broad class of dimensional URs. It reproduces 

known URs as special cases. Note that dimensional arguments alone cannot determine numerical 

prefactors or fully capture dimensionless relations. 

(10) Monomial scaling relations between two PQs were derived for the case n = 2 within the GRE 

framework. In particular, direct or inverse proportionality between two quantities arises when their 

exponents equal 1 or –1, respectively. 

(11) General formulae were obtained by introducing physical assumptions relating energy to 

mass, energy to frequency, energy density to distance, force per unit area to distance, radiation 

density to temperature, energy density to temperature, acceleration to temperature, entropy density 

to temperature, energy density to acceleration, curvature tensor to the energy-momentum tensor, 

Lagrange density function to the electromagnetic field tensor, superfluid density to voltage, and so 

on. 

(12) Numerous fundamental physical equations were recovered without prefactors, including 

the Einstein’s mass– energy relation, event horizon temperature of a SBH [3], light quantum relation, 

inverse correlation between high-frequency quasi-periodic oscillation and black hole mass [139-147], 

relativistic gravitational energy, biquadratic relation between photon energy and energy density 

[139-147], event horizon radius of stationary black holes [131], A.H. Compton wavelength formula, 

age of a SBH [3], observed density of dark energy [135, 136], Casimir effect equation, relativistic 

gravitational pressure or negative pressure in HDE [137, 148-152], Planck blackbody radiation law, 

Stefan-Boltzmann law, relativistic gravitational energy density with square temperature, Unruh 

formula [134], relativistic gravitational temperature, cubic relation between entropy density and 

temperature [144], relativistic gravitational entropy density, relativistic gravitational acceleration, 

quantized acceleration, Einstein field equations [138], electromagnetic Lagrange density function 

under the Lorentz gauge [153], relation of quasiparticle character and superfluid density of 

FeTe0.55Se0.45 [154], and so on. 

(13) Several new relations were identified, including those between the square of energy and its 

density in SBH, the volume of event horizon of stationary black holes and its age, the energy density 

and the sixth power of the radius in SBH, the central pressure inside an SBH, the gravitational energy 

density far within the horizon, and the entropy density at the SBH center [137], the acceleration far 

from the horizon inside SBH.  

(14) The analysis was extended to systems of three and four PQs, corresponding to n = 3 or 4 in 

the GRE, respectively. 

(15) Additional general formulae were formulated by postulating relations among energy, mass 

and distance; energy, charge and distance; acceleration, force and mass; acceleration, mass and 

distance; pressure, volume and temperature; thickness, temperature and resistance; temperature, 

superfluid density and mass; conductivity, temperature and carrier density; force, Hamiltonian 

function and curvature, etc. 

(16) Many well-known factor-free equations were reproduced, including Newton's law, 

Schrödinger equation, the temperature in Newtonian attraction, Coulomb law, Newton's second law, 

Newtonian gravitational acceleration, height of the nth energy level of neutrons in the Earth's 

gravitational field [159], acceleration of HDE, Clapeyron equation, superconducting thin film power 

law [155-156], Uemura's law [160], two formulas of critical temperature of LSCO [157, 158], relation 

of the conductivity and temperature of monocrystalline Sr1−xLaxTiO3  [162], generalized CFL [163], 

and centrifugal force formula.  

(17) Certain derived relations currently lack a clear physical interpretation. 

(18) Three methods are used to determine the relationships of three PQs, one is the exponential 

equation of G and c, ħ and c or ħ and G being equal to zero; another is the one of G being equal to 

zero, then consider the circumstances of ħ and c; the third is the one of G being equal to zero and 

one of c being equal to a fitted number, because the exponential equation of c is not necessarily equal 

to zero. 
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(19) The GRE proves to be a powerful tool for determining power product relationships among 

two, three, and four PQs, although it does not predict numerical prefactors. This approach offers a 

unified and conceptually significant method for deriving scaling laws across multiple domains of 

physics. 
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