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Abstract

Hallucination, the generation of plausible yet factually incorrect content, remains a critical barrier to
the reliable deployment of Large Language Models (LLMs). This review synthesizes the state-of-the-art
in understanding, detecting, and mitigating LLM hallucinations. We begin by establishing a clear
taxonomy, tracing the concept’s evolution from a broad notion of factual error to a more precise
definition centered on unfaithfulness to a model’s accessible knowledge. We then survey detection
methodologies, categorizing them by model access requirements and examining techniques such
as uncertainty estimation, consistency checking, and knowledge grounding. Finally, we provide a
structured overview of mitigation strategies organized by their application across the model lifecycle:
(1) data-centric approaches like high-quality curation, (2) model-centric alignment through preference
optimization and knowledge editing, and (3) inference-time techniques such as Retrieval-Augmented
Generation (RAG) and self-correction. We conclude that a layered, "defense-in-depth" strategy is
essential for robust mitigation. Key open challenges are scalable data curation, the alignment-capability
trade-off, and editing reasoning paths over facts.

Keywords: hallucination; Large Language Models (LLMs); factuality; faithfulness; hallucination
detection; hallucination mitigation; multimodal Al; Al safety

1. Introduction

The rapid growth of Large Language Models (LLMs), which have been extensively surveyed
for their evolution, architectures, and applications [1] has introduced a paradigm shift in artificial
intelligence (AI), marking a key phase in the broader evolutionary roadmap from generative to
innovative systems [2] This expansion includes novel applications in specialized fields like education,
where Al tools are now used to generate instructional video content for complex topics such as
navigating healthcare systems [3]. Yet, their reliability is persistently challenged by the phenomenon
of hallucination, the generation of content that appears plausible but is factually incorrect, unfaithful
to the provided context, or logically inconsistent [4]. As these models are integrated into increasingly
critical domains, from information retrieval and medical diagnostics to complex engineering systems
like smart grid communication [5], a precise and robust framework for understanding and categorizing
hallucinations has become necessary. This survey begins by reviewing the definitions and taxonomies
proposed in the academic literature. It then traces the conceptual evolution from a general notion of
factual deviation to a more refined understanding that distinguishes a model’s internal consistency
from its alignment with external reality, offering a unified perspective crucial for developing effective
detection methodologies [6].
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Table 1. Summary of Hallucination and Factuality Concepts in LLMs.

Category

Definition

Example / Note

Core Concepts

Hallucination Output inconsistent with model’s knowl- Fluent but factually or logically
edge (context or training) wrong
Factuality Output matches real-world facts Can be outdated or missing info

Intrinsic vs. Extrinsic

Intrinsic
Extrinsic

Contradicts input context
Unsupported by input or training

Wrong data in source summary
Fabricated facts beyond knowledge

Faithfulness vs. Factuality

Faithfulness Violates user instructions or context Ignoring prompt or internal contra-
dictions
Factuality Conflicts with real-world truth Made-up or false facts

Domain-Specific Types

Contradiction Fact or context violation Entity /relation  errors, self-
contradiction

Fabrication Made-up entities/events False citations, image-text mis-
matches

Logical Fallacies Flawed reasoning or code Invalid logic, dead code

1.1. Definition: From Factual Deviation to Internal Inconsistency

The definition of hallucination describes it as a model-generated output that drifts from factual
reality or includes fabricated information. This initial conceptualization was sufficient for early-
generation models, where the primary concern was the generation of blatant falsehoods. However, as
LLMs have grown in complexity and capability, this definition has proven to be too broad, conflating
two distinct types of model failure: a failure to be correct about the world (factuality) and a failure to be
consistent with its own accessible knowledge (hallucination) [7]. Recent work has sought to disentangle
these concepts by proposing a clearer taxonomy. Notably, Bang et al. define hallucination as output that
contradicts the model’s accessible knowledge—its training data and inference context—while factuality
refers to consistency with real-world, verifiable facts external to the model [8]. This distinction is more
than semantic; it underpins how hallucinations are detected and mitigated. A model may produce
factually incorrect output that aligns with its training data (not a hallucination) or factually correct
output that contradicts a provided source (an intrinsic hallucination). Hallucination thus concerns
consistency with known or provided context, while factuality refers to correctness against external
reality. Recognizing this separation enables more targeted detection: internal consistency checks differ
fundamentally from external fact-checking [9].

1.2. Intrinsic vs. Extrinsic

Building on this foundational distinction, the literature has developed two primary types to
classify hallucinations: the intrinsic/extrinsic framework and the factuality /faithfulness framework

[].

¢  Intrinsic Hallucinations: An intrinsic hallucination occurs when the model generates content that
directly contradicts the user-provided input. It reflects a failure to remain faithful to the immediate
context. For example, if a source text states that a company’s revenue was $10 million, but the
summary produced by the model reports $15 million, this constitutes an intrinsic hallucination
[10]. This category focuses on the model’s ability to accurately represent information available
during inference [11].

¢  Extrinsic Hallucinations: This error occurs when the model generates content that cannot be
verified from the provided context and is inconsistent with its training data. It involves fabricating
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unsupported information. For example, if a summary includes, “The CEO also announced plans
to expand into the Asian market,” despite no such statement in the source or likely in training
data, it constitutes an extrinsic hallucination. This category reflects the model’s tendency to
over-extrapolate or fill gaps beyond its knowledge, often when generating novel content based
solely on task instructions. It underscores the model’s limitations in recognizing the boundaries
of its internal knowledge [10].

1.3. Factuality vs. Faithfulness Framework

An alternative taxonomy introduced by Huang et al. [4] classifies hallucinations based on
the principle violated: adherence to user-provided context (faithfulness) versus alignment with
objective external facts (factuality). While insightful, this framework can blur the line between internal
consistency and factual correctness.

It is important to distinguish hallucination from low factuality, though they often overlap. Hal-
lucination concerns whether the model’s output is consistent with its accessible knowledge—i.e.,
the input context or training data—highlighting issues of internal coherence. In contrast, factuality
assesses the objective correctness of the content relative to external, real-world information [7,12]. A
model may produce an internally consistent response that is nonetheless factually inaccurate due to
outdated training data or changes in the real world.

Hallucinated content often appears fluent, confident, and persuasive, complicating detection
for both automated tools and human users. While some argue that controlled hallucination may be
desirable in creative applications, this is not the case in high-stakes domains such as medicine, law,
or finance. In these settings, mitigating hallucinations is essential to ensure the reliability, safety, and
ethical deployment of LLMs.

Factuality Hallucination refers to outputs that contradict verifiable real-world knowledge. It
includes:

e Factual inconsistency: the output directly contradicts known facts [13].
e Factual fabrication: the model invents facts not grounded in external sources [4].

Faithfulness Hallucination arises when the generated content diverges from user-provided
constraints or the prompt context. Key forms include:

e Instruction inconsistency: failure to follow or accurately interpret user instructions.

e Context inconsistency: contradiction of the provided input, aligning closely with intrinsic halluci-
nations.

e Logical inconsistency: internal contradictions within the generated output itself.

1.4. Domain-Specific Manifestations of Hallucination

Hallucinations in Multimodal Large Language Models (MLLMs) denote a discrepancy between
factual visual content and the corresponding generated textual output. These hallucinations may
appear either as judgment deficiencies (e.g., incorrect true/false responses) or descriptive inaccuracies
(e.g., mismatched visual details) [14]. As LLMs are increasingly deployed in diverse modalities and
applications, a finer-grained taxonomy has emerged to address the distinct forms of hallucinations
that occur across different domains.

*  Contradiction: This category captures direct violations of known facts or inconsistencies with
provided context [15,16].

Factual contradiction occurs when the model generates statements that are inconsistent with real-
world knowledge [4]. These may include entity-error hallucinations (e.g., naming an incorrect
entity) or relation-error hallucinations (e.g., misrepresenting a relationship between entities).
Context-conflicting hallucinations emerge when generated output contradicts previous model
outputs. For example, a summary might incorrectly substitute a person’s name mentioned earlier
[17].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Input-conflicting hallucinations arise when generated content diverges from the user’s original
input, such as adding details not found in the source material [17].

In code generation, context inconsistency refers to contradictions between newly generated code
and prior code or user input, often manifesting as subtle logical flaws [18,19].

A distinct subcategory is self-contradiction, where the model outputs two logically inconsistent
statements within the same response, even though it was conditioned on a unified context [19].

e  Fabrication: This form of hallucination involves the generation of entities, events, or citations
that are entirely fictitious or unverifiable [20].

In MLLMs, fabrication often manifests as mismatches between visual inputs and textual descrip-
tions.

Object category hallucinations involve naming objects that do not appear in the image (e.g., men-
tioning a “laptop” or “small dog” that isn’t present).

Object attribute hallucinations occur when properties such as shape, color, material, or quantity
are inaccurately described—e.g., referring to a man as “long-haired” when he is not. These may
include event misrepresentations or counting errors.

Object relation hallucinations involve incorrect assertions about spatial or functional relationships
(e.g., “the dog is under the table” when it is beside it) [14].

In high-stakes medical applications, where Al is increasingly used for diagnosis, treatment, and
patient monitoring [21-23], fabrication can result in hallucinated clinical guidelines, procedures,
or sources that do not exist [24].

More broadly, fabrication occurs when LLMs are prompted with questions beyond their training
knowledge or lack sufficient data, leading them to generate plausible-sounding but unsupported
content.

* Logical Fallacies: These hallucinations reflect flawed reasoning or illogical outputs in tasks
requiring step-by-step reasoning [25,26].
In medicine, these errors fall under the umbrella of Incomplete Chains of Reasoning, encompassing:

+  Reasoning hallucination—incorrect logic in clinical explanations;
+  Decision-making hallucination—unsound treatment suggestions;
+  Diagnostic hallucination—medically invalid diagnoses [24].

In general LLMs, such flaws are often labeled as logical inconsistencies, which include internal
contradictions within the same output.
In code generation, this includes:

+  Intention conflicts, where the generated code deviates from the intended functionality—either
in overall or local semantics [27];

+  Dead code, where generated segments serve no purpose and may cause execution failures
[19,28].

In multimodal contexts, logical fallacies may appear as judgment errors, such as incorrect answers

to visual reasoning tasks.

2. Hallucination Detection Methods

Hallucination detection is a crucial step toward ensuring the factual reliability of large language
models. As summarized in Table 2, approaches can be broadly categorized based on the level of access
required to the underlying model: white-box, grey-box, and black-box [15]. Each category supports a
range of techniques with different trade-offs in accuracy, interpretability, and deployment feasibility.
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Table 2. Comparison of Hallucination Detection Methods by Access Level.
Detection - Key Meth- e
Category Paradigm Core Principle ods/Papers Strengths Limitations
H1c}der}—state INSIDE Direct Requires full
. Internal State activations (EigenScore),
White-box . model access;
Analysis reveal SAPLMA, model-specific
hallucinations OPERA, DolLa p
Token/sequence Probabilistic
. Low confidence probability, Efficient; assumptions
Uncertainty . . . . .
Grey-box Quantification = likely Semantic accessible via may fail; needs
hallucination entropy, logits API logits
LLM-Check access
 SelfCheckGPT, Model- Expensive
. Hallucinations . (multiple calls);
Consistency LM-vs-LM, agnostic; any .
Black-box . vary across . . fails if model
Checking Multi-Agent API-accessible .
outputs consistently
Debate model .
hallucinates

2.1. Uncertainty-Based Detection

These methods estimate whether hallucinations are likely based on the uncertainty or inconsis-
tentness of the model when generating output.

* Logit-Based Estimation (Grey-box): Measures output entropy or minimum token probability.
Higher entropy is often correlated with hallucinations [29]. This approach operates on the
principle that the model’s confidence is encoded in its output probability distribution. Techniques
in this category analyze the token-level logits provided by the model’s final layer. A high Shannon
entropy across the vocabulary for a given token position indicates that the model is uncertain and
distributing probability mass widely, which is a strong signal of potential hallucination. Other
metrics include using the normalized probability of the generated token itself; a low probability
suggests the model found the chosen token unlikely, even if it was selected during sampling.

*  Verbalized Confidence (Black-box): Prompts the model to self-report confidence levels in its own
outputs (e.g., on a 0-100 scale). Useful but sometimes misleading [30,31].

¢ Consistency-Based Estimation (Black-box): Generates multiple completions for the same prompt
and computes their agreement via metrics such as BERTScore or n-gram overlap. Used in
SelfCheckGPT [32] and variants. For example, SelfCheckGPT generates multiple responses and
compares them to the original sentence using metrics like n-gram overlap, BERTScore, or even a
question-answering framework to see if questions derived from one response can be answered by
others. A statement that is not consistently supported across multiple generations is flagged as a
potential hallucination. However, this method’s primary drawback is its computational cost, as it
requires multiple inference calls for a single detection, and it may fail if the model consistently
makes the same factual error across all outputs.

e  Pseudo-Entropy (Grey-box): Estimates token-level entropy from top-k probabilities returned by
APIs, effective in restricted-access settings [33,34].

2.2. Knowledge-Based Detection (Fact-Checking and Grounding)

This class of methods verifies outputs against internal or external factual resources.

¢  External Retrieval (RAG-based): This approach transforms hallucination detection into a fact-
checking task by grounding the LLM’s output in external, authoritative knowledge. A typical
RAG-based verifier works by first decomposing the generated text into a set of verifiable claims
or facts. Each claim is then used as a query to a retriever, which fetches relevant snippets from
a knowledge corpus (e.g., Wikipedia or a domain-specific database). Finally, a verifier model,
often an NLI (Natural Language Inference) model or another LLM, assesses whether the retrieved
evidence supports, refutes, or is neutral towards the claim. While powerful, this method is
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dependent on the quality of both the retriever and the external knowledge base; retrieval failures
or outdated sources can lead to incorrect verification. [35].

¢ Internal Verification (Chain-of-Verification): This black-box technique cleverly prompts the
model to critique its own outputs without external tools. The process unfolds in a structured
sequence: (1) the LLM generates an initial response; (2) it is then prompted to devise a series of
verification questions to fact-check its own response; (3) it attempts to answer these questions
independently; and (4) finally, it generates a revised, final answer based on the outcome of its
self-verification process. This method encourages a form of self-reflection, forcing the model to
re-examine its claims and correct inconsistencies. Its main advantage is its resource independence,
but its effectiveness is bounded by the model’s own internal knowledge and its ability to formulate
useful verification questions. [36].

¢ Knowledge Graph Validation: Uses structured KGs to cross-check relationships or facts asserted
by the model, particularly effective for relational consistency [37,38].

*  ChainPoll Adherence (Closed-domain): Judges how well output aligns with provided evidence
passages using multi-round CoT prompting and majority voting [33].

2.3. Dedicated Detection Models

These methods involve training additional models specialized for hallucination detection.

*  QA-Based Fact Checking: Converts model outputs to questions and uses QA pipelines to retrieve
answers from source text. Discrepancies reveal hallucinations [39].

e  LLM-as-a-Judge: Prompts a strong LLM (e.g., GPT-4) to evaluate the correctness of another LLM’s
output based on CoT reasoning. ChainPoll Correctness and G-Eval are examples [40,41].

e  Supervised Classifiers: Train models directly on hallucinated vs. non-hallucinated examples [42]
(e.g., HALOCHECK [43]).

Table 3. Representative Techniques for Detecting Hallucinations in LLMs.

Technique Detection Type Reference
SelfCheckGPT Consistency-based (Black-box) [44]
ChainPoll Prompt-based Judge (Black-box) [33]
G-Eval Promptef:l LLM with scoring [45]
aggregation
. Retrieval-based Fact-checking
RAG + Verifier (Grey/Black-box) [46]
. e Internal self-questioning
Chain-of-Verification (Black-box) [36]
Graph-based Context-Aware Reference alignment via graph [47]
(GCA) matching
Mechanistic interpretability in
ReDeEP RAG [48]
Drowzee (Metamorphic Testing) Loglc—progr.ammmg and [49]
metamorphic prompts
MIND (Internal-state monitoring)  Internal activations [50]
. . Combined self- and cross-model
Verify-when-Uncertain consistency (Black-box) [31]
Holistic Multimodal LLM Bottom-up detection in [51]
Detection Multimodal LLMs
Large Vision Language Models . :
Hallucination Multimodal reference-free [52]

Benchmarks/M-HalDetect

detection
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High Explainability Knowledge-Based

/ LLM-as-a-Judge
(e.g., RAG, ChainPoll)

Self-Consistency White-Box Internal State
(e.g., SelfCheckGPT) Analysis

Explainability & Granularity

Logit-Based Uncertainty

e.g., Entro
Low Explainability (c.e Py)

o

Low Cost High Cost

Execution Cost & Access Requirement

Figure 1. A conceptual landscape of hallucination detection methods, mapping techniques based on their trade-
offs between execution cost/access requirements and the explainability of their outputs. Methods in the top-left
are highly explainable and accessible via standard APIs, while methods on the right require privileged model
access or high computational cost.

2.4. Summary and Practical Considerations

The selection of an appropriate hallucination detection method involves navigating the trade-offs
between cost, access, and explainability, as visualized in Figure 1. Key factors guiding this choice
include:

* Application Scope: Whether the hallucination is open-domain (factual world knowledge) or
closed-domain (reference-consistent).

*  Model Access: Varying from full access to weights (white-box) to restricted API-only access
(black-box).

¢  Efficiency: Cost of multiple generations (e.g., 20 runs in SelfCheckGPT vs. 5 in ChainPoll).

*  Explainability: Whether human-readable justifications are provided (e.g., CoT in ChainPoll,
entailment evidence in NLI). This aligns with a growing demand for user-friendly and explainable
frameworks in Al-driven processes, such as those being developed for AutoML [53].

As LLMs become more widely deployed, hallucination detection methods must be scalable,
reliable across diverse tasks, and adaptable to evolving model architectures.

3. Hallucination Mitigation Strategies

Following the identification and detection of hallucinations, the next critical challenge is their
mitigation. Generating plausible yet factually incorrect or ungrounded content remains one of the
most significant obstacles to the safe and widespread deployment of LLMs. Mitigation is crucial in
high-stakes domains, including medicine, finance, and law [54]. Mitigation is not a single intervention
but a multifaceted process that must be addressed across the model lifecycle. Effective strategies are
essential to ensure reliability, safety, and ethical use.

The following hallucination mitigation techniques are organized by the stage of the model lifecycle
at which they are applied: (1) Data-Centric and Pre-Training Strategies, which improve the quality
and factual grounding of the data used to train LLMs; (2) Model-Centric Strategies, which modify
model parameters via fine-tuning and alignment to promote truthful behavior; and (3) Inference-Time
Strategies, which introduce post hoc mechanisms during generation to reduce hallucinations [4].
These categories are not mutually exclusive; rather, robust solutions often integrate methods from
multiple stages to form a layered defense.

Table 4 summarizes this taxonomy, highlighting key principles, representative techniques, and
associated trade-offs.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 4. Taxonomy of Hallucination Mitigation Techniques
Lifecycle Stage  Core Principle Representative Tech- Strengths Limitations
niques
Data-Centric Improve factual High-quality data Reduces hal- High compu-
(Pre-Training) quality of training curation;  retrieval- lucination tational cost;
data to reduce augmented pre- fundamen- limited by
hallucination at training (e.g., RETRO tally; better source qual-
the source. [55]). internal ity; difficult to
grounding. scale.
Model-Centric ~ Align model Supervised fine- Enables Requires
(Fine-Tuning & parameters with tuning (SFT); RLHF; steerability human prefer-
Alignment) factual ~ knowl- DPO; knowledge edit- and surgical ence data; risk
edge and human ing (ROME [56,57], correction; of forgetting;
preferences. MEMIT [58]). enhances unstable opti-
safety. mization.
Inference-Time  Guide generation Retrieval-augmented Model- Latency over-
with external evi- generation (RAG); agnostic; head; tool
dence or real-time self-refinement (CoVe low deploy- quality bottle-
reasoning. [36], Self-Refine [59]); ment barrier; neck; limited
decoding control can use live correction
(DoLa [60], CAD [61]); information.  for internal
ITI[62]. errors.

3.1. Data-Centric and Pre-Training Strategies

The most fundamental way to mitigate hallucinations is to address them at their root: the training
data [63]. An LLM'’s propensity to produce non-factual content often reflects the quality of the data it
has learned from. Models trained on biased, low-quality, or inaccurate data are inherently more prone
to hallucination. Improving the factual integrity of training corpora reduces the need for complex
downstream interventions.

3.1.1. High-Quality Data Curation and Filtering

The factual accuracy of LLMs is tightly linked to the quality of their training data. Manual filtering
of massive datasets, often trillions of tokens, is infeasible, making automated and heuristic-based
strategies critical for large-scale curation.

Common approaches include filtering web-scale corpora (e.g., Common Crawl) to retain only
documents from trusted sources such as Wikipedia, academic publications, or reputable books, as well
as upsampling verified domains to increase the proportion of reliable content [64].

In addition to filtering, synthetic data generation has become increasingly popular. For example,
models like phi-1.5 are trained on textbook-style synthetic data enriched with commonsense rea-
soning and factual content [65,66]. Data augmentation techniques—particularly those ensuring topic
diversity and structural coherence—are also key during fine-tuning.

In high-stakes domains such as healthcare and law, expert-curated, domain-specific corpora (e.g.,
MedCPT [24], verified legal documents) are essential. Rigorous data governance practices, including
dataset versioning and prompt logging, further enhance reliability.

3.1.2. Retrieval-Augmented Pre-Training

A more advanced approach incorporates retrieval into the pre-training process itself, enabling
models to condition generation on external sources of truth from the outset.

A canonical example is the Retrieval-Enhanced Transformer (RETRO), which augments an LLM
with a retrieval module to access a large corpus of supporting documents during training. RETRO
consistently outperforms similarly sized non-retrieval models in factuality.
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However, this strategy is resource-intensive—raising training costs by up to 25%, and inherits lim-
itations from the retrieval corpus. If the external memory contains outdated or inaccurate information,
these errors may become embedded in the model’s parameters.

Ultimately, the principle of ‘garbage in, garbage out’ applies acutely on the LLM scale. Models
trained on flawed corpora require inference-time strategies to counteract baked-in inaccuracies, adding
latency and complexity. High-quality data remains the most impactful investment in hallucination
mitigation.

3.2. Model-Centric Strategies: Fine-Tuning and Alignment

Model-centric strategies modify parameters post-pre-training to instill factually grounded behav-
iors. They occupy a middle ground—more flexible than rigid data curation, yet more durable than
inference-only fixes. We focus on three paradigms: supervised fine-tuning, preference optimization,
and knowledge editing.

3.2.1. Supervised Fine-Tuning (SFT)

SFT adapts a general-purpose model to specific tasks or domains using curated (prompt, response)
datasets. Factual accuracy depends heavily on the dataset’s quality.

Several techniques enhance SFT’s effectiveness for factuality: fine-tuning on fact-checked data
from encyclopedias or scientific sources; knowledge injection using stronger teacher models to distill
information into weaker students; and training with counterfactuals to improve truth discrimination.

Instruction fine-tuning is another promising direction, teaching models to follow structured
prompts (e.g., requiring citations or disclaimers when uncertain). However, SFT can introduce chal-
lenges such as catastrophic forgetting, where new knowledge overwrites useful prior capabilities.

3.2.2. Preference Optimization for Alignment

Rather than training on labeled data, preference optimization aligns models with human judg-
ments of what constitutes better, more factual outputs.

Reinforcement Learning from Human Feedback (RLHF) is the dominant approach, but can
inadvertently reward fluency and confidence over accuracy. Variants like Reinforcement Learning for
Hallucination (RLFH) decompose outputs into atomic facts, evaluating each for correctness to provide
token-level rewards or penalties.

To address this, more targeted methods like Reinforcement Learning for Hallucination (RLFH)
decompose outputs into atomic facts, evaluate each for correctness, and propagate token-level rewards
or penalties accordingly.

Direct Preference Optimization (DPO) has emerged as a simpler and more stable alternative
to RLHEF. It reframes reward learning as a classification task over preference pairs (e.g., factual vs.
hallucinated responses), avoiding the need for a reward model or RL algorithm. DPO achieves
comparable or superior performance and has inspired variants such as:

*  Cal-DPO: calibrates implicit reward scales for more controlled updates [67].
*  V-DPO: incorporates visual context to reduce hallucinations in vision-language models [68].

These methods collectively highlight the growing sophistication of model alignment techniques
and their importance in mitigating hallucinations in deployed systems.

The rapid evolution from RLHF to DPO reflects a significant macro-trend in LLM alignment:
the shift from complex, multi-stage, and often unstable pipelines toward simpler, more efficient alter-
natives. RLHF typically involves several sequential steps—supervised fine-tuning, preference data
collection, reward model training, and reinforcement learning—each of which introduces implementa-
tion challenges and hyperparameter sensitivity.

DPO’s key innovation is to eliminate the intermediate reward modeling step by reframing
alignment as a direct optimization over preference pairs, akin to a classification objective. This
simplification retains or even improves performance, suggesting that the benefits of complex, bio-
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inspired cognitive processes can often be captured through more mathematically direct formulations.
The broader implication is a growing emphasis on scalability and engineering pragmatism in alignment
research.

This trajectory points toward a future where alignment objectives may be incorporated earlier in
the training pipeline—potentially through preference-aware pre-training—reducing reliance on costly
post-hoc interventions and integrating alignment more naturally into model development.

3.2.3. Knowledge Editing: Surgical Model Updates

Knowledge editing offers a highly targeted alternative to full fine-tuning, enabling precise modifi-
cations to an LLM’s internal knowledge without retraining or risking catastrophic forgetting. These
methods aim to update or correct individual facts (e.g., changing a CEO’s name or a capital city) while
preserving the rest of the model’s behavior.

Most techniques follow a locate-then-edit paradigm [69]. Using mechanistic interpretability
tools—such as causal tracing—these methods identify specific MLP layers or neurons responsible for
storing a factual association. Once located, they directly modify the corresponding weights to reflect
updated information.

Prominent examples include:

*  ROME (Rank-One Model Editing): Introduces a rank-one update to a single MLP layer to revise
a single fact.

¢  MEMIT (Mass Editing Memory in Transformers): Extends ROME to modify multiple layers,
allowing batch editing of thousands of facts.

*  GRACE: Stores updated knowledge in an external memory module without modifying model
parameters.

*  In-Context Editing (ICE): A training-free approach that injects new facts into the prompt context
during inference.

While effective for single-hop factual updates, locate-then-edit methods struggle with multi-hop
reasoning. Research shows that shallow layers often store atomic facts, while deeper layers handle
reasoning chains and indirect inferences. Consequently, editing a shallow-layer fact (e.g., “Paris is the
capital of France”) may not update deeper reasoning pathways needed to answer questions like “What
is the capital of the country where the Eiffel Tower is located?”

Newer methods such as IFMET [69] (Interpretability-based Factual Multi-hop Editing in Trans-
formers) aim to address this by identifying and updating both shallow and deep layers, improving
generalization to multi-step reasoning tasks. However, no single editing method currently excels in all
key criteria: effectiveness, generalization, location, and performance, and the model architecture and
domain remain highly dependent on the model.

The locate-then-edit approach reflects a powerful but limited metaphor: treating knowledge in
LLM:s as editable “code.” Techniques like ROME and MEMIT lend empirical support to this view,
showing that factual associations are often localized and editable. However, their failure in multihop
reasoning [70] reveals the boundaries of the metaphor. Updating one “line of code” (e.g., “A is the
parent of B”) does not recompile the full “program” to reflect downstream deductions (e.g., “A is the
grandparent of C”).

This suggests that factual storage and factual reasoning are distinct and entangled processes
within transformer models. Moving from “fact editing” to reasoning path editing [71] is a frontier for
future work—one that will require more advanced interpretability tools capable of tracing and altering
full causal chains of computation within the network.

3.3. Inference-Time Mitigation Strategies

Inference-time mitigation strategies operate during text generation and offer a practical advantage:
they do not require model retraining or parameter updates. These methods are often model-agnostic
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and applicable to proprietary or black-box APIs, making them attractive for deployment in real-world
systems.
Broadly, these techniques fall into three categories:

1. Knowledge-Augmented Generation: Augment the prompt with retrieved external evidence.
Structured Reasoning and Self-Correction: Guide the generation process through explicit,
multi-step reasoning [72].

3. Advanced Decoding and Intervention: Modify the decoding process or directly intervene in the
model’s internal activations [73].

3.3.1. Retrieval-Augmented Generation (RAG)

RAG grounds model responses in external, verifiable sources. It follows a retrieve-augment-generate
pipeline:
1.  Retrieve: Search a knowledge base (e.g., via dense retrieval) using the user query.
2. Augment: Append retrieved evidence to the prompt.
3. Generate: Produce a response conditioned on both the query and the retrieved documents.

Modern RAG systems go beyond this basic structure. For instance:

e  Tterative RAG: Performs multiple rounds of retrieval and generation.
e  Self-Corrective RAG: The model generates a draft, then retrieves evidence to revise its own
output.

While powerful, Retrieval-Augmented Generation (RAG) introduces new failure points, collec-
tively termed RAG-induced hallucinations, which can manifest at various stages of the pipeline. The
process often first breaks down at the retrieval stage, where the retriever may fail to fetch relevant
documents due to a semantic mismatch with the user’s query (low recall), or it might retrieve noisy;,
irrelevant, or even contradictory documents (low precision). When such flawed context is passed to the
generator, it can distract the model, leading to responses that are ungrounded or based on the wrong
information. Furthermore, generation failure can occur even with perfectly relevant documents. The
LLM might disregard the provided context and revert to its own parametric knowledge, misinterpret
the retrieved text leading to a logically inconsistent response, or "over-extrapolate" from the evidence
by fabricating plausible details that are not explicitly supported, a common issue in long-form gen-
eration tasks. Ultimately, the integrity of the entire RAG system depends on its knowledge base. If
the source documents contain factual errors, biases, or outdated information, the RAG system will
faithfully reproduce this misinformation under a veneer of authority. A significant challenge also
arises when retrieved documents present conflicting information, forcing the model to synthesize an
answer from contradictory sources, which can itself lead to hallucinations.

3.3.2. Structured Reasoning and Self-Correction

These techniques impose structure on the model’s generation to improve factuality and logical
coherence.

Chain-of-Thought (CoT) prompting encourages step-by-step reasoning before providing an
answer. It is particularly effective for large models on tasks requiring arithmetic or commonsense
reasoning. However, it can degrade performance in smaller models and sometimes masks internal
errors, complicating hallucination detection.

Chain-of-Verification (CoVe) introduces an explicit verification loop:

Generate a baseline answer.

Plan verification questions.
Independently answer the questions.

Ll

Revise the original response based on verification.

This approach encourages the model to fact-check itself and revise its outputs based on new evidence.
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Self-Refine generalizes this idea with an iterative framework: Generate — Feedback — Refine. The
model plays both author and critic, progressively improving its outputs.

These methods represent a shift toward treating the LLM as a programmable reasoning engine.
Rather than issuing a single query and receiving a flat response, developers orchestrate multistage
workflows with explicit roles, planning, verification, and correction at each stage. This “LLM-as-CPU”
paradigm enables more transparent, controllable, and reliable Al systems.

3.3.3. Advanced Decoding and Intervention Strategies

These techniques intervene directly in the model’s output probabilities or internal representations,
typically requiring logit or layer-level access.

e DolLa (Decoding by Contrasting Layers): Amplifies factual content by contrasting logit distri-
butions from mature (later) and premature (earlier) layers, suppressing shallow patterns and
emphasizing deep semantic knowledge [60].

¢  CAD (Context-Aware Decoding): Forces the model to attend to provided evidence by penalizing
tokens that would have been generated in the absence of context. This encourages grounding in
retrieved or injected information, reducing reliance on parametric priors [61].

These decoding-aware methods enable finer-grained control over generation and offer promising
directions for mitigating hallucinations, particularly when paired with external retrieval or structured
prompting.

A second, more invasive class of inference-time methods involves direct intervention in the
model’s internal activations.

* Inference-Time Intervention (ITI): This white-box technique seeks to steer the model’s internal
state toward more truthful representations. ITI begins by applying linear probing to a dataset
such as Truthful QA [74], identifying a sparse set of attention heads whose activations correlate
strongly with truthful responses. Then, during inference, a small learned vector is added to the
output of these attention heads at each generation step. This nudges the model’s activations in
truth-correlated directions, substantially improving truthfulness with minimal computational
overhead and no parameter updates.

3.4. A Unified View and Future Directions

The wide range of hallucination mitigation strategies—from data-centric techniques and model
editing to inference-time interventions—illustrates that there is no universal solution. Instead, the most
robust systems will likely emerge from a defense-in-depth approach, where complementary techniques
are layered across the model development and deployment pipeline to address different failure modes.

A conceptual model of such a multi-layered mitigation stack includes:

1. Foundation Layer (Data): High-quality pre-training data serves as the first line of defense. This
layer emphasizes automated filtering, deduplication, and upsampling of trusted sources to ensure
a strong factual grounding in the parametric knowledge of the model.

2. Core Layer (Model Alignment): Alignment methods like Direct Preference Optimization (DPO)
shape the model’s behavior toward factual and safe outputs. For known factual inaccuracies,
targeted Knowledge Editing methods (e.g., ROME, MEMIT) provide localized corrections without
retraining the entire model.

3. Application Layer (Inference-Time Grounding): Retrieval-Augmented Generation (RAG) and
related techniques are applied at deployment to supplement parametric knowledge of the model
with up-to-date domain-specific information, helping mitigate knowledge gaps and ensure
temporal relevance.

4. Guardrail Layer (Verification and Post-processing): Structured reasoning strategies like Chain-
of-Verification (CoVe) enforce internal consistency through self-checking. Finally, detection tools
serve as a post-hoc safety net, flagging hallucinated outputs for human review or triggering
fallback behaviors (e.g., “I don’t have enough information to answer”).
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Despite significant progress, several open challenges and promising research directions remain:

®  Scalable Data Curation: Developing fully automated, scalable, and multilingual pipelines for
high-quality data curation remains a foundational challenge, especially at trillion-token scales.

e  The Alignment—Capability Trade-off: Overalignment may suppress the model’s general capa-
bilities—such as reasoning or creativity—resulting in an “alignment tax.” Research is needed to
develop alignment strategies that maintain or even enhance model utility across tasks.

e Editing Reasoning, Not Just Facts: Most knowledge editing methods target discrete facts. How-
ever, true robustness requires the ability to trace and modify the deeper reasoning paths through
which those facts influence behavior—a challenge that demands more advanced mechanistic
interpretability.

¢ Compositionality of Mitigation Techniques: While combining mitigation methods appears
beneficial, their interactions are poorly understood. For example, how does RAG interact with
ITI or DPO? Can editing methods interfere with self-correction routines? Systematic analysis is
needed to develop principled strategies for composing techniques effectively.

¢  The Inevitability of Hallucination: An emerging perspective suggests that hallucination may be
an inherent artifact of probabilistic next-token generation and the current training paradigm. If so,
mitigation efforts may shift from eliminating hallucinations to managing them through uncertainty
estimation, robust detection, fallback policies, and human-in-the-loop oversight.

4. Recent Trends and Open Issues

The field of LLM hallucination research is rapidly evolving, moving from foundational definitions
toward more sophisticated, integrated, and scalable solutions. While significant progress has been
made in identifying and mitigating hallucinations, several key trends and persistent open problems
now define the research frontier. This section outlines the most prominent emerging trends in detection
and mitigation, alongside the unresolved challenges that will shape future work.

4.1. Emerging Trends in Mitigation and Detection

Current research reflects a clear shift towards more efficient, targeted, and system-level approaches
to managing hallucination. Four major trends are apparent:

*  Shift Toward Simpler Alignment Methods: There is a notable trend away from complex, multi-
stage alignment pipelines like Reinforcement Learning from Human Feedback (RLHF) towards
simpler, more stable, and mathematically direct alternatives. The rapid adoption of Direct
Preference Optimization (DPO) and its variants exemplifies this, as it achieves comparable or
superior performance to RLHF without the need to train a separate reward model, thus reducing
complexity and computational overhead.

* Rise of Surgical Knowledge Editing: Rather than relying on costly full-model fine-tuning,
researchers are increasingly developing "surgical" methods to edit a model’s internal knowledge
directly. Techniques like ROME and MEMIT use mechanistic interpretability to locate and
precisely modify the model parameters responsible for storing specific facts. This allows for the
efficient correction of factual errors without risking the catastrophic forgetting of other knowledge.

* Advanced Inference-Time Interventions: A major area of innovation is the development of
techniques that operate during the generation process, requiring no parameter updates. These
methods are highly practical as they can be applied to any model, including proprietary APIs.
This trend includes Retrieval-Augmented Generation (RAG) pipelines that ground outputs in
external evidence, self-correction routines [75] like Chain-of-Verification (CoVe) that prompt a
model to fact-check its own statements, and advanced decoding strategies (e.g., DoLa, ITI) that
intervene in a model’s internal activations to steer it toward more truthful outputs.

e Development of LLM-as-a-Judge Paradigms: For detection, there is a growing reliance on
using powerful LLMs themselves as evaluators. The LLM-as-a-Judge [40,76] paradigm, seen in
methods like G-Eval [45], leverages the advanced reasoning capabilities of frontier models (e.g.,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0540.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2025 d0i:10.20944/preprints202510.0540.v1

14 of 19

GPT-4) to assess the factuality and faithfulness of outputs from other models, often outperforming
traditional metrics and approaching human-level judgment.

4.2. Key Open Problems

Despite significant progress, several foundational challenges remain at the forefront of hallucina-
tion research:

¢  Scalable and High-Quality Data Curation: The principle of ‘garbage in, garbage out’ remains
a fundamental obstacle. Developing fully automated, scalable, and multilingual pipelines for
curating high-quality, factually accurate, and diverse training data is a critical and unresolved
challenge, especially at the scale of trillions of tokens.

e The Alignment-Capability Trade-off: A critical open problem is the risk of an "alignment tax,"
where interventions to enhance factuality and reduce hallucinations inadvertently diminish other
valuable model capabilities. Aggressive fine-tuning or preference optimization (like RLHF or
DPO) can make a model overly cautious, causing it to refuse to answer reasonable questions or lose
its ability to perform complex, multi-step reasoning. For instance, a model heavily optimized for
factuality might become less creative or struggle with tasks that require nuanced inference beyond
explicitly stated facts. This trade-off forces a difficult balance: how can we make models more
truthful without making them less useful? Future research must focus on developing alignment
techniques that are more targeted and less disruptive. This could involve disentangling different
model capabilities at a mechanistic level, allowing for surgical interventions that correct for
factuality without impairing reasoning or creativity. Another promising direction is developing
alignment methods that explicitly reward nuanced behaviors, such as expressing uncertainty or
providing conditional answers, rather than simply penalizing any output that cannot be externally
verified. Synthesizing factuality with utility remains a central challenge for the next generation of
LLMs.

¢ Editing Reasoning Paths, Not Just Facts: Current knowledge editing techniques (e.g., STRUEDIT
[77]) are effective at correcting discrete, single-hop facts (e.g., "Paris is the capital of France").
However, they struggle to update the complex, multi-hop reasoning pathways that depend on
those facts. Advancing from fact-editing to reasoning-path editing is a major frontier that will
require more sophisticated mechanistic interpretability tools.

¢ Compositionality of Mitigation Techniques: The most robust systems will likely employ a
"defense-in-depth" strategy that layers multiple mitigation techniques. However, the interactions
between these methods are poorly understood. Research is needed to develop a principled
understanding of how different strategies (e.g., RAG, DPO, and knowledge editing) can be
composed effectively without interfering with one another.

5. Conclusions

This review has provided a structured overview of the multifaceted challenge of hallucination in
Large Language Models, charting the course from fundamental definitions to advanced detection and
mitigation strategies. Our analysis highlights the critical conceptual shift from viewing hallucinations
as simple factual errors to understanding them as failures of faithfulness to a model’s known context,
distinct from external factuality. We categorized the diverse landscape of detection methods by their
model access requirements, revealing a fundamental trade-off between the high accuracy of white-
box, interpretability-based approaches and the broad applicability of black-box, consistency-based
techniques.

In surveying mitigation strategies, we found no single solution; instead, the most effective path
forward lies in a layered, "defense-in-depth" approach. This involves integrating techniques across
the entire model lifecycle: starting with high-quality, factually grounded data curation (data-centric),
followed by robust model alignment using preference optimization and surgical knowledge editing
(model-centric), and concluding with real-time, evidence-based grounding at deployment (inference-
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time). Despite significant progress, critical challenges remain. Future work must address scalable
data curation, the so-called "alignment tax" where mitigation can suppress model capabilities, and
the complex frontier of editing not just facts, but the underlying reasoning paths that produce them.
Ultimately, managing hallucination is not about its complete elimination but about building a robust,
multi-layered ecosystem of tools and practices that ensure LLMs are reliable, transparent, and safe for
widespread societal deployment.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

CAD Context-Aware Decoding

Cal-DPO  Calibrated Direct Preference Optimization
CoT Chain-of-Thought

CoVe Chain-of-Verification

DPrO Direct Preference Optimization

GCA Graph-based Context-Aware

ICE In-Context Editing

IFMET Interpretability-based Factual Multi-hop Editing in Transformers
ITI Inference-Time Intervention

KG Knowledge Graph

LLM Large Language Model

MEMIT  Mass Editing Memory in Transformers
MIND Internal-state monitoring

MLLM Multimodal Large Language Model

MLP Multi-Layer Perceptron

RAG Retrieval-Augmented Generation

RETRO Retrieval-Enhanced Transformer

RLHF Reinforcement Learning from Human Feedback
RLFH Reinforcement Learning for Hallucination
ROME Rank-One Model Editing

SFT Supervised Fine-Tuning

V-DPO Vision-guided Direct Preference Optimization

References

1.  Sajjadi Mohammadabadi, S.M.; Kara, B.C.; Eyupoglu, C.; Uzay, C.; Tosun, M.S.; Karakus, O. A Survey of
Large Language Models: Evolution, Architectures, Adaptation, Benchmarking, Applications, Challenges,
and Societal Implications. Electronics 2025, 14. https://doi.org/10.3390/electronics14183580.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.3390/electronics14183580
https://doi.org/10.20944/preprints202510.0540.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2025 d0i:10.20944/preprints202510.0540.v1

16 of 19

2. Mohammadabadi, S.M.S. From generative ai to innovative ai: An evolutionary roadmap. arXiv preprint
arXiv:2503.11419 2025.

3. Maleki, E.; Chen, L.T; Vijayakumar, T.M.; Asumah, H.; Tretheway, P.; Liu, L.; Fu, Y,; Chu, P. Al-generated
and YouTube Videos on Navigating the US Healthcare Systems: Evaluation and Reflection. International
Journal of Technology in Teaching & Learning 2024, 20.

4. Huang, L.; Yu, W.; Ma, W.; Zhong, W.; Feng, Z.; Wang, H.; Chen, Q.; Peng, W.; Feng, X.; Qin, B.; etal. A
survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions.
ACM Transactions on Information Systems 2025, 43, 1-55.

5. Mohammadabadi, S.M.S.; Entezami, M.; Moghaddam, A K.; Orangian, M.; Nejadshamsi, S. Generative
artificial intelligence for distributed learning to enhance smart grid communication. International Journal of
Intelligent Networks 2024, 5, 267-274.

6. Rawte, V,; Sheth, A,; Das, A. A survey of hallucination in large foundation models. arXiv preprint
arXiv:2309.05922 2023.

7. Cao, M.; Dong, Y.; Cheung, ].C.K. Hallucinated but factual! inspecting the factuality of hallucinations in
abstractive summarization. arXiv preprint arXiv:2109.09784 2021.

8. Bang, Y,; Cahyawijaya, S.; Lee, N.; Dai, W.; Su, D.; Wilie, B.; Lovenia, H.; Ji, Z,; Yu, T.; Chung, W.; etal. A
multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity.
arXiv preprint arXiv:2302.04023 2023.

9. Bang, Y, Ji, Z; Schelten, A.; Hartshorn, A.; Fowler, T.; Zhang, C.; Cancedda, N.; Fung, P. Hallulens: LIm
hallucination benchmark. arXiv preprint arXiv:2504.17550 2025.

10. Rawte, V.; Chakraborty, S.; Pathak, A.; Sarkar, A.; Tonmoy, S.I; Chadha, A.; Sheth, A.; Das, A. The troubling
emergence of hallucination in large language models-an extensive definition, quantification, and prescriptive
remediations. Association for Computational Linguistics, 2023.

11. Orgad, H.; Toker, M.; Gekhman, Z.; Reichart, R.; Szpektor, I.; Kotek, H.; Belinkov, Y. LIms know more than
they show: On the intrinsic representation of llm hallucinations. arXiv preprint arXiv:2410.02707 2024.

12.  Guan, J.; Dodge, J.; Wadden, D.; Huang, M.; Peng, H. Language models hallucinate, but may excel at fact
verification. arXiv preprint arXiv:2310.14564 2023.

13. Huang, Y,; Feng, X.; Feng, X.; Qin, B. The factual inconsistency problem in abstractive text summarization: A
survey. arXiv preprint arXiv:2104.14839 2021.

14. Liu, H.; Xue, W,; Chen, Y.; Chen, D.; Zhao, X.; Wang, K.; Hou, L.; Li, R.; Peng, W. A survey on hallucination
in large vision-language models. arXiv preprint arXiv:2402.00253 2024.

15.  Chakraborty, N.; Ornik, M.; Driggs-Campbell, K. Hallucination detection in foundation models for decision-
making: A flexible definition and review of the state of the art. ACM Computing Surveys 2025, 57, 1-35.

16. Miindler, N.; He, J.; Jenko, S.; Vechev, M. Self-contradictory hallucinations of large language models:
Evaluation, detection and mitigation. arXiv preprint arXiv:2305.15852 2023.

17.  Zhang, Y.; Li, Y.; Cui, L,; Cai, D.; Liu, L.; Fu, T.; Huang, X.; Zhao, E.; Zhang, Y.; Chen, Y.; et al. Siren’s song in
the ai ocean: A survey on hallucination in large language models. Computational Linguistics 2025, pp. 1-45.

18. Le, T.H.; Chen, H.; Babar, M.A. Deep learning for source code modeling and generation: Models, applications,
and challenges. ACM Computing Surveys (CSUR) 2020, 53, 1-38.

19. Liu, F; Liu, Y,; Shi, L.; Huang, H.; Wang, R.; Yang, Z.; Zhang, L.; Li, Z.; Ma, Y. Exploring and evaluating
hallucinations in llm-powered code generation. arXiv preprint arXiv:2404.00971 2024.

20. Bai, Z.; Wang, P; Xiao, T.; He, T.; Han, Z.; Zhang, Z.; Shou, M.Z. Hallucination of multimodal large language
models: A survey. arXiv preprint arXiv:2404.18930 2024.

21. Sajjadi, M.; Borhani Peikani, M. The Impact of Artificial Intelligence on Healthcare: A Survey of Applications
in Diagnosis, Treatment, and Patient Monitoring 2024.

22. Mohammadabadi, S.M.S.; Seyedkhamoushi, F.; Mostafavi, M.; Peikani, M.B. Examination of AI’s role in
Diagnosis, Treatment, and Patient care. In Transforming gender-based healthcare with Al and machine learning;
CRC Press, 2024; pp. 221-238.

23. Mohammadabadi, S.M.S.; Peikani, M.B. Identification and classification of rheumatoid arthritis using
artificial intelligence and machine learning. In Diagnosing Musculoskeletal Conditions using Artifical Intelligence
and Machine Learning to Aid Interpretation of Clinical Imaging; Elsevier, 2025; pp. 123-145.

24. Kim, Y, Jeong, H,; Chen, S.; Li, S.S.; Lu, M.; Alhamoud, K; Mun, J.; Grau, C.; Jung, M.; Gameiro, R.; et al.
Medical hallucinations in foundation models and their impact on healthcare. arXiv preprint arXiv:2503.05777
2025.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0540.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2025 d0i:10.20944/preprints202510.0540.v1

17 of 19

25. Banerjee, S.; Agarwal, A; Singla, S. Llms will always hallucinate, and we need to live with this. arXiv
preprint arXiv:2409.05746 2024.

26. Anh, D.H,; Tran, V.; Nguyen, L.M. Analyzing Logical Fallacies in Large Language Models: A Study on
Hallucination in Mathematical Reasoning. In Proceedings of the JSAI International Symposium on Artificial
Intelligence. Springer, 2025, pp. 179-195.

27. Hao, Y; Yu, H.; You, J. Beyond Facts: Evaluating Intent Hallucination in Large Language Models. arXiv
preprint arXiv:2506.06539 2025.

28. Zhang, Z.; Wang, C.; Wang, Y.; Shi, E.; Ma, Y.; Zhong, W.; Chen, J.; Mao, M.; Zheng, Z. LIm hallucinations
in practical code generation: Phenomena, mechanism, and mitigation. Proceedings of the ACM on Software
Engineering 2025, 2, 481-503.

29. Quevedo, E.; Salazar, ].Y.; Koerner, R; Rivas, P.; Cerny, T. Detecting hallucinations in large language model
generation: A token probability approach. In Proceedings of the World Congress in Computer Science,
Computer Engineering & Applied Computing. Springer, 2024, pp. 154-173.

30. Kim, S.S,; Liao, Q.V.; Vorvoreanu, M.; Ballard, S.; Vaughan, ].W. "I'm Not Sure, But...": Examining the Impact
of Large Language Models” Uncertainty Expression on User Reliance and Trust. In Proceedings of the
Proceedings of the 2024 ACM conference on fairness, accountability, and transparency, 2024, pp. 822-835.

31. Xue, Y.; Greenewald, K.; Mroueh, Y.; Mirzasoleiman, B. Verify when uncertain: Beyond self-consistency in
black box hallucination detection. arXiv preprint arXiv:2502.15845 2025.

32. Jiang, L.; Jiang, K.; Chu, X.; Gulati, S.; Garg, P. Hallucination detection in LLM-enriched product listings. In
Proceedings of the Proceedings of the Seventh Workshop on e-Commerce and NLP@ LREC-COLING 2024,
2024, pp. 29-39.

33. Friel, R; Sanyal, A. Chainpoll: A high efficacy method for llm hallucination detection. arXiv preprint
arXiv:2310.18344 2023.

34. Khadangi, A.; Sartipi, A.; Tchappi, I.; Bahmani, R. Noise Augmented Fine Tuning for Mitigating Hallucina-
tions in Large Language Models. arXiv preprint arXiv:2504.03302 2025.

35. Cheng, M.; Luo, Y,; Ouyang, J.; Liu, Q; Liu, H,; Li, L;; Yu, S.; Zhang, B.; Cao, J.; Ma, J.; etal. A survey on
knowledge-oriented retrieval-augmented generation. arXiv preprint arXiv:2503.10677 2025.

36. Dhuliawala, S.; Komeili, M.; Xu, J.; Raileanu, R.; Li, X.; Celikyilmaz, A.; Weston, J. Chain-of-verification
reduces hallucination in large language models. arXiv preprint arXiv:2309.11495 2023.

37. Lavrinovics, E.; Biswas, R.; Bjerva, J.; Hose, K. Knowledge graphs, large language models, and hallucinations:
An nlp perspective. Journal of Web Semantics 2025, 85, 100844.

38. Guan, X;; Liu, Y,; Lin, H.; Lu, Y,; He, B.; Han, X.; Sun, L. Mitigating large language model hallucinations via
autonomous knowledge graph-based retrofitting. In Proceedings of the Proceedings of the AAAI Conference
on Artificial Intelligence, 2024, Vol. 38, pp. 18126-18134.

39. Dutta, T.; Liu, X. FaCTQA: Detecting and Localizing Factual Errors in Generated Summaries Through
Question and Answering from Heterogeneous Models. In Proceedings of the 2024 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2024, pp. 1-8.

40. Gu, J.; Jiang, X,; Shi, Z.; Tan, H.; Zhai, X.; Xu, C.; Li, W,; Shen, Y.; Ma, S.; Liu, H,; et al. A survey on
llm-as-a-judge. arXiv preprint arXiv:2411.15594 2024.

41. Li, H,; Dong, Q.; Chen, ].; Su, H,; Zhou, Y.;; Ai, Q.; Ye, Z,; Liu, Y. LIms-as-judges: a comprehensive survey on
Ilm-based evaluation methods. arXiv preprint arXiv:2412.05579 2024.

42. Luo,]J,;Li, T; Wu, D,; Jenkin, M; Liu, S.; Dudek, G. Hallucination detection and hallucination mitigation:
An investigation. arXiv preprint arXiv:2401.08358 2024.

43. Elaraby, M.; Lu, M.; Dunn, J.; Zhang, X.; Wang, Y,; Liu, S.; Tian, P.; Wang, Y.; Wang, Y. Halo: Estimation and
reduction of hallucinations in open-source weak large language models. arXiv preprint arXiv:2308.11764
2023.

44. Manakul, P; Liusie, A.; Gales, M.J. Selfcheckgpt: Zero-resource black-box hallucination detection for
generative large language models. arXiv preprint arXiv:2303.08896 2023.

45. Liu, Y; Iter, D.; Xu, Y,; Wang, S.; Xu, R.; Zhu, C. G-eval: NLG evaluation using gpt-4 with better human
alignment. arXiv preprint arXiv:2303.16634 2023.

46. Song, J.; Wang, X.; Zhu, J.; Wu, Y.; Cheng, X.; Zhong, R.; Niu, C. RAG-HAT: A hallucination-aware
tuning pipeline for LLM in retrieval-augmented generation. In Proceedings of the Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing: Industry Track, 2024, pp. 1548-1558.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0540.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2025 d0i:10.20944/preprints202510.0540.v1

18 of 19

47. Fang, X.; Huang, Z; Tian, Z.; Fang, M.; Pan, Z.; Fang, Q.; Wen, Z; Pan, H.; Li, D. Zero-resource hallucination
detection for text generation via graph-based contextual knowledge triples modeling. In Proceedings of the
Proceedings of the AAAI Conference on Artificial Intelligence, 2025, Vol. 39, pp. 23868-23877.

48. Sun, Z.; Zang, X.; Zheng, K.; Song, Y.; Xu, J.; Zhang, X.; Yu, W,; Li, H. Redeep: Detecting hallucination in
retrieval-augmented generation via mechanistic interpretability. arXiv preprint arXiv:2410.11414 2024.

49. Li, N,; Li, Y;; Liu, Y;; Shi, L.; Wang, K.; Wang, H. Drowzee: Metamorphic testing for fact-conflicting
hallucination detection in large language models. Proceedings of the ACM on Programming Languages 2024,
8,1843-1872.

50. Su, W; Wang, C.; Ai, Q.; Hu, Y.; Wu, Z,; Zhou, Y,; Liu, Y. Unsupervised real-time hallucination detection
based on the internal states of large language models. arXiv preprint arXiv:2403.06448 2024.

51. Wu, S;; Fei, H,; Pan, L.; Wang, W.Y;; Yan, S.; Chua, T.S. Combating Multimodal LLM Hallucination via
Bottom-Up Holistic Reasoning. In Proceedings of the Proceedings of the AAAI Conference on Artificial
Intelligence, 2025, Vol. 39, pp. 8460-8468.

52. Gunjal, A; Yin, J.; Bas, E. Detecting and preventing hallucinations in large vision language models. In
Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2024, Vol. 38, pp. 18135-
18143.

53. Sirt, M,; Eytipoglu, C. A User-Friendly and Explainable Framework for Redesigning AutoML Processes
with Large Language Models. In Proceedings of the 2025 33rd Signal Processing and Communications
Applications Conference (SIU). IEEE, 2025, pp. 1-4.

54. Chen, Z.Z.; Ma, ].; Zhang, X.; Hao, N.; Yan, A.; Nourbakhsh, A.; Yang, X.; McAuley, J.; Petzold, L.; Wang,
W.Y. A survey on large language models for critical societal domains: Finance, healthcare, and law. arXiv
preprint arXiv:2405.01769 2024.

55. Sathyanarayana, S.V.; Shah, R.; Hiremath, S.D.; Panda, R.; Jana, R.; Singh, R.; Irfan, R.; Murali, A.; Ram-
sundar, B. DeepRetro: Retrosynthetic Pathway Discovery using Iterative LLM Reasoning. arXiv preprint
arXiv:2507.07060 2025.

56. Huang, B.; Chen, C.; Xu, X,; Payani, A.; Shu, K. Can Knowledge Editing Really Correct Hallucinations?
arXiv preprint arXiv:2410.16251 2024.

57. Meng, K;; Bau, D.; Andonian, A.; Belinkov, Y. Locating and editing factual associations in gpt. Advances in
neural information processing systems 2022, 35, 17359-17372.

58. Meng, K,; Sharma, A.S.; Andonian, A.; Belinkov, Y.; Bau, D. Mass-editing memory in a transformer. arXiv
preprint arXiv:2210.07229 2022.

59. Madaan, A.; Tandon, N.; Gupta, P; Hallinan, S.; Gao, L.; Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.;
Yang, Y.; et al. Self-refine: Iterative refinement with self-feedback. Advances in Neural Information Processing
Systems 2023, 36, 46534—46594.

60. Chuang, Y.S,; Xie, Y,; Luo, H.; Kim, Y,; Glass, J.; He, P. Dola: Decoding by contrasting layers improves
factuality in large language models. arXiv preprint arXiv:2309.03883 2023.

61. Shi, W; Han, X.; Lewis, M.; Tsvetkov, Y.; Zettlemoyer, L.; Yih, W.t. Trusting your evidence: Hallucinate
less with context-aware decoding. In Proceedings of the Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 2: Short Papers), 2024, pp. 783-791.

62. Li, K, Patel, O,; Viégas, F; Pfister, H.; Wattenberg, M. Inference-time intervention: Eliciting truthful answers
from a language model. Advances in Neural Information Processing Systems 2023, 36, 41451-41530.

63. Amatriain, X. Measuring and mitigating hallucinations in large language models: amultifaceted approach,
2024.

64. Rejeleene, R.; Xu, X,; Talburt, . Towards trustable language models: Investigating information quality of
large language models. arXiv preprint arXiv:2401.13086 2024.

65. Li, Y;; Bubeck, S.; Eldan, R.; Del Giorno, A.; Gunasekar, S.; Lee, Y.T. Textbooks are all you need ii: phi-1.5
technical report. arXiv preprint arXiv:2309.05463 2023.

66. Abdin, M.; Aneja, J.; Behl, H.; Bubeck, S.; Eldan, R.; Gunasekar, S.; Harrison, M.; Hewett, R.].; Javaheripi, M.;
Kauffmann, P; et al. Phi-4 technical report. arXiv preprint arXiv:2412.08905 2024.

67. Xiao, T,; Yuan, Y.; Zhu, H,; Li, M.; Honavar, V.G. Cal-dpo: Calibrated direct preference optimization for
language model alignment. Advances in Neural Information Processing Systems 2024, 37, 114289-114320.

68. Xie, Y,; Li, G.; Xu, X,; Kan, M.Y. V-dpo: Mitigating hallucination in large vision language models via
vision-guided direct preference optimization. arXiv preprint arXiv:2411.02712 2024.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0540.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2025 d0i:10.20944/preprints202510.0540.v1

19 of 19

69. Zhang, Z.;Li, Y,; Kan, Z,; Cheng, K.; Hu, L.; Wang, D. Locate-then-edit for multi-hop factual recall under
knowledge editing. arXiv preprint arXiv:2410.06331 2024.

70. Li,N.; Song, Y.; Wang, K,; Li, Y; Shi, L.; Liu, Y.; Wang, H. Detecting LLM Fact-conflicting Hallucinations
Enhanced by Temporal-logic-based Reasoning. arXiv preprint arXiv:2502.13416 2025.

71. Zhang, H.; Deng, H.; Ou, J.; Feng, C. Mitigating spatial hallucination in large language models for path
planning via prompt engineering. Scientific Reports 2025, 15, 8881.

72. Plaat, A.; Wong, A.; Verberne, S.; Broekens, J.; van Stein, N.; Back, T. Reasoning with large language models,
a survey. arXiv preprint arXiv:2407.11511 2024.

73. Tang, F; Huang, Z; Liu, C.; Sun, Q.; Yang, H.; Lim, S.N. Intervening anchor token: Decoding strategy in
alleviating hallucinations for MLLMs. In Proceedings of the The Thirteenth International Conference on
Learning Representations, 2025.

74. Lin, S; Hilton, J.; Evans, O. Truthfulqa: Measuring how models mimic human falsehoods. arXiv preprint
arXiv:2109.07958 2021.

75. Pan, L.; Saxon, M.; Xu, W,; Nathani, D.; Wang, X.; Wang, W.Y. Automatically correcting large language
models: Surveying the landscape of diverse self-correction strategies. arXiv preprint arXiv:2308.03188 2023.

76. Zheng, L.; Chiang, W.L.; Sheng, Y.; Zhuang, S.; Wu, Z.; Zhuang, Y.; Lin, Z; Li, Z.; Li, D.; Xing, E.; et al.
Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in neural information processing systems
2023, 36, 46595-46623.

77. Bi, B.; Liu, S.;; Wang, Y.; Mei, L.; Gao, H.; Fang, J.; Cheng, X. Struedit: Structured outputs enable the fast and
accurate knowledge editing for large language models. arXiv preprint arXiv:2409.10132 2024.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0540.v1
http://creativecommons.org/licenses/by/4.0/

