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Abstract

Agentic Gen Al deployment is critically hampered by the siloed and sensitive nature of financial data,
stringent data privacy regulations (e.g., GDPR, CCPA), and growing cybersecurity threats. This paper
provides a comprehensive analysis of the synergistic integration of Federated Learning with Generative
and Agentic Al systems for financial risk management. We explore the technical foundations of FL,
its role in training and deploying Gen Al models like Large Language Models (LLMs) for synthetic
data generation and risk analysis, and its function as the backbone for secure, collaborative Agentic Al
systems that can autonomously navigate complex, multi-institutional workflows. The paper surveys
key applications in anti-financial crime (AFC), credit risk assessment, and market risk modeling, while
also addressing the persistent challenges—including communication overhead, systems heterogeneity,
and model security—that must be overcome. We summarize recent FL frameworks including Fed Avg
with partial model averaging, federated LLM fine-tuning with differential privacy, secure multi-party
computation protocols, and edge-FL hybrid systems. Our technical review include: (1) FedF1 aggrega-
tion for imbalanced financial datasets achieving 10-15% AUC improvement, (2) Privacy-preserving
synthetic data generation via federated diffusion models with 0.85-.95 data fidelity, (3) Agentic Al
systems with federated policy learning demonstrating 80-90% task completion rates, and (4) Secure ag-
gregation protocols providing formal (¢, §)-differential privacy guarantees. Experimental results across
financial applications show significant performance gains: 20-30% improvement in AML detection,
20-25% reduction in false positives, and 30-40% cost savings in automated compliance. The reviewed
architectures address critical challenges in data privacy, regulatory compliance (GDPR, CCPA, Basel
III), and cross-institutional collaboration while maintaining model accuracy within 2-4% of centralized
approaches. Our work establishes FL as the foundational infrastructure for next-generation Al systems
in finance, enabling secure collaboration across data silos without compromising sensitive information.
All results are from cited literature.

Keywords: federated learning; generative Al; agentic Al; financial risk management; data privacy;
large language models (LLMs); anti-financial crime; synthetic data; decentralized Al

1. Introduction

The financial sector is inherently data-driven, relying on sophisticated models to quantify and
mitigate risks such as fraud, credit default, and market volatility. The advent of Generative Al (Gen Al)
and Agentic Al has unlocked new frontiers in this domain [1,2]. Gen Al, particularly Large Language
Models (LLMs), can synthesize complex data patterns, generate realistic synthetic data for model
testing, and enhance natural language interfaces for risk reporting [3,4]. Concurrently, Agentic Al
systems, which are capable of autonomous reasoning, planning, and execution of multi-step tasks,
are poised to revolutionize operational workflows, from automated compliance checks to dynamic
portfolio management [5-7].

Despite this potential, a fundamental constraint remains: the inability to centralize sensitive
financial data from multiple institutions due to privacy laws, competitive concerns, and security
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risks [8,9]. This creates isolated "data silos" that limit the robustness and generalizability of Al models
trained on any single institution’s data.

Federated Learning (FL) offers a paradigm shift [10,11]. It is a distributed machine learning
approach where a global model is trained collaboratively across multiple clients (e.g., banks) while
keeping all training data localized [12,13]. Only model updates (e.g., gradients), and not the raw data
itself, are shared with a central aggregating server. This architecture directly addresses the core privacy
and regulatory challenges of the financial industry [14,15].

This paper investigates the confluence of these three powerful trends: Federated Learning,
Generative Al, and Agentic Al, specifically within the context of financial risk management. We argue
that FL is not merely an enabling technology but a critical infrastructure component that allows Gen
Al and Agentic Al to realize their full potential in a secure and compliant manner. The contributions of
this paper are:

* A synthesis of the technical principles of Federated Learning and its relevance to the financial sector.

®  An exploration of how FL facilitates the development and application of Generative Al, including
LLMs, for risk management tasks.

e A framework for understanding how Agentic Al systems can leverage FL to operate effectively
and autonomously across decentralized financial environments.

e A survey of current applications and a discussion of open challenges and future research direc-
tions.

2. Background and Fundamentals
2.1. Federated Learning (FL)

Federated Learning is a machine learning setting where the goal is to train a high-quality model
with training data distributed over a large number of clients [10,16]. The canonical FL algorithm,
Federated Averaging (FedAvg), involves repeated cycles of local computation on client devices and
aggregation on a central server [17].

The key benefits of FL are:

e Data Privacy: Raw data never leaves the client’s device or private infrastructure, mitigating
privacy breaches and ensuring compliance with regulations like GDPR [18,19].

e  Regulatory Compliance: FL provides a technical framework for collaboration that aligns with
data localization and "right to be forgotten" laws [9,20].

®  Access to Richer Data Landscapes: By breaking down data silos, FL allows for the creation of
models that learn from a much wider and more diverse data distribution, leading to more robust
and generalizable performance [8,21].

Challenges include communication efficiency, statistical heterogeneity (non-IID data across
clients), systems heterogeneity (varied client hardware), and ensuring security against inference
attacks on the shared model updates [22,23].

2.2. Generative Al in Finance

Generative Al refers to algorithms that can create new, plausible data instances. In finance, Gen
Al, particularly LLMs, is being applied to:

*  Synthetic Data Generation: Creating artificial datasets that mimic the statistical properties
of real financial data, useful for model development and testing without exposing sensitive
information [24,25].

¢ Risk Reporting and Analysis: Automating the generation of risk assessment reports, summa-
rizing complex regulatory documents, and powering conversational interfaces for querying risk
data [1,2].

®  Scenario Generation: Simulating a vast array of economic and market scenarios for stress testing
and portfolio management [4].
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2.3. Agentic Al in Finance

Agentic Al systems are characterized by their ability to perceive their environment, reason, plan,
and take actions to achieve specific goals autonomously or with minimal human intervention [5,6]. In
finance, these "Al agents" are being developed for:

e Autonomous Compliance and Anti-Financial Crime (AFC): Agents that can continuously
monitor transactions, investigate suspicious activities across different data sources, and file
reports [26,27].

e Intelligent Process Automation: Automating complex, multi-step back-office operations in trade
settlement, claims processing, and customer onboarding [28,29].

*  Personalized Financial Advisory: Al agents that act on behalf of customers, managing invest-
ments and providing tailored financial advice [30,31].

3. Figures and Charts

This section presents comprehensive visualizations and analytical charts that demonstrate the
performance characteristics, architectural components, and comparative analysis of the proposed
federated learning algorithms for financial risk management.

3.1. Architecture Diagrams
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Figure 1. Federated Learning Architecture for Financial Institutions [8,15]
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Figure 2. Compact Federated Learning Workflow with Secure Aggregation [9,20]

3.2. Algorithm Performance Charts
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Figure 3. Convergence Comparison of Federated Learning Algorithms in Financial Fraud Detection
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Figure 4. Communication Overhead Comparison Across Federated Learning Approaches [33]
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3.3. Privacy-Performance Trade-off Analysis
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Figure 5. Privacy-Accuracy Trade-off in Federated Learning for Financial Data [12,19]

3.4. Synthetic Data Quality Assessment
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Figure 6. Synthetic Data Quality Comparison for Financial Fraud Detection [24]
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Figure 7. Performance Improvement using FedF1 Aggregation for Imbalanced Financial Data

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0524.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 October 2025 d0i:10.20944/preprints202510.0524.v1

6 of 23

3.5. Agentic Al Performance Metrics
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Figure 8. Agentic Al Performance in Financial Decision-Making Tasks [26,34]
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Figure 9. Scalability Benefits of Federated Learning in Multi-Institutional Fraud Detection [9,21]

3.6. Edge-FL Hybrid System Performance
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Figure 10. Latency-Accuracy Trade-off in Edge-FL Hybrid Systems for Real-time Financial Applications [36]

4. Quantitative Foundations and Methods

The integration of Federated Learning with Generative and Agentic Al in financial risk manage-
ment is underpinned by several quantitative foundations and methodological approaches that ensure
both performance and privacy guarantees.
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4.1. Federated Learning Algorithms and Convergence

The core quantitative foundation of FL lies in distributed optimization algorithms, with Feder-
ated Averaging (FedAvg) serving as the baseline approach. Recent theoretical work has established
performance guarantees for partial model averaging in federated settings, demonstrating that selective
aggregation strategies can maintain convergence while improving communication efficiency [17]. The
mathematical formulation of FL typically involves solving:

N
min F(w) = ) piFi(w) 1)
=1

where Fy(w) represents the local objective function for client k, and p; denotes the weighting factor,
typically proportional to the local dataset size [10,11].

The convergence properties of FL algorithms have been extensively studied, with analyses
showing that factors such as data heterogeneity across clients, local update frequency, and client
participation rates significantly impact the convergence rate and final model performance [12,37].

4.2. Synthetic Data Generation Metrics

The quantitative evaluation of generative models in FL environments employs several key metrics
to assess synthetic data quality and utility. Research by Ozcan et al. demonstrates comprehensive
benchmarking approaches using machine learning classifiers to evaluate synthetic, real, and hybrid
datasets in both centralized and federated settings [24]. Their methodology includes:

e  Fidelity Metrics: Measuring how well synthetic data preserves statistical properties of the original
financial datasets

e  Utility Metrics: Assessing the performance of downstream tasks (e.g., fraud detection, credit
scoring) when trained on synthetic versus real data

*  Privacy Metrics: Quantifying the risk of sensitive information leakage through differential privacy
guarantees or membership inference attacks

The study employs Fl-score optimization in federated aggregation (FedF1) to address class
imbalance issues commonly encountered in financial risk datasets [24].

4.3. Performance Evaluation Frameworks

Quantitative assessment of FL systems in finance involves multi-dimensional evaluation criteria:

System Performance = f(Model Accuracy, Communication Efficiency, Privacy Preservation) (2)

Research by various institutions has established benchmarking frameworks that measure:

®  Model Performance: Accuracy, precision, recall, and AUC metrics for risk prediction tasks across
participating institutions [21,38]

e Communication Efficiency: The number of communication rounds and total data transferred
required to achieve target performance levels [33]

®  Scalability: System performance with increasing numbers of participating clients and data
heterogeneity levels [8]

4.4. Privacy-Preserving Mathematical Formulations

The mathematical foundations of privacy in FL incorporate differential privacy and secure multi-
party computation techniques. The privacy-utility trade-off can be formally expressed as:

max E[U(M(D))] subjectto e-differential privacy 3)
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where M represents the learning mechanism, D the distributed data, and U the utility function [12,19].
Recent work has extended these formulations to federated settings with large language models,
addressing the unique challenges of preserving privacy while maintaining model performance [32,39].

4.5. Empirical Results and Quantitative Findings

Several studies provide quantitative evidence of FL effectiveness in financial applications:

*  Fraud detection systems using FL frameworks like Flower on Amazon SageMaker have demon-
strated detection accuracy improvements of 15-25% compared to single-institution models while
maintaining data privacy [38].

*  Federated learning implementations in anti-money laundering have shown the ability to reduce
false positive rates by 30-40% through collaborative model training across multiple financial
institutions [9,21].

®  Research on federated credit scoring models indicates improved predictive performance for un-
derrepresented borrower segments, with AUC improvements of 0.08-0.12 compared to institution-
specific models [40,41].

These quantitative findings substantiate the practical value of FL approaches in enhancing finan-
cial risk management capabilities while addressing critical privacy and regulatory constraints.

5. Proposed Architectures and Technical Frameworks

The integration of Federated Learning with Generative and Agentic Al has led to sev-
eral proposed architectures and frameworks, each with distinct mathematical foundations and
implementation approaches.

5.1. Flower Framework for Financial Federated Learning

The Flower framework has emerged as a prominent architecture for federated learning in financial
applications. The mathematical foundation follows the standard federated averaging approach:

Wil Z ?wt (4)
k=1
where wf represents the model weights from client k at round ¢, 1. is the number of samples at client k,
and # is the total samples across all clients [15,38].

This architecture has been successfully deployed on Amazon SageMaker for fraud detection
applications, demonstrating scalability across multiple financial institutions while maintaining data
isolation through secure aggregation protocols [38]. The framework supports heterogeneous client
environments and implements differential privacy mechanisms:

M(D) = f(D) + N(0,025?) (5)

where N represents Gaussian noise added to the aggregated gradients with sensitivity S and noise
scale o [12].

5.2. Federated Learning with Large Language Models

Recent architectures propose federated fine-tuning of large language models for financial applica-
tions. The technical approach involves:

K

(6)

= arg m1

=1

where 0 represents the LLM parameters, D; is the private dataset of client i, and £ is the language
modeling loss function [32,39].
Notable implementations include:
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e  FedLLM: A framework for privacy-preserving fine-tuning of transformer architectures across
multiple financial institutions

e  Federated Prompt Tuning: Adaptation method where only prompt parameters are shared during
federation, reducing communication overhead by 60-80% compared to full model updates [42]

5.3. Agentic Al Architectures with Federated Backbone

Microsoft and other industry leaders have proposed agentic architectures where autonomous
agents leverage federated models for decision-making. The technical stack comprises:

A= (P,G,E,®) @)

where P represents the perception module, G the goal specification, E the execution environment, and
@ the federated policy model updated via:

@11 + FedAvg({®}}N,) (8)

This architecture enables collaborative intelligence while maintaining local autonomy [7,34].

5.4. Synthetic Data Generation Pipelines

Ozcan et al. propose an integrated architecture combining synthetic data generation with feder-
ated learning;:

G*,D* = arg ménmgx V(D,G) = Ex~psu,l0g D(x)] + Ezp, [log(1 — D(G(z)))] )

The architecture employs diffusion models for synthetic financial data generation, with the
training process distributed via federated learning across multiple institutions [24]. Key components
include:

e  Centralized Generator: Trained on aggregated model updates from participating institutions

e  Local Discriminators: Maintained at each client to ensure synthetic data quality matches local
data distributions

e FedF1 Aggregation: Specialized aggregation method optimizing for Fl-score in imbalanced
financial datasets

5.5. Multi-Party Computation Enhanced FL

Several architectures incorporate secure multi-party computation (MPC) with federated learning:

n

[y] = Y [xi]-w; mod p (10)
i=1

where [x;] represents secret-shared data from client i, and computations occur without reveal-

ing individual inputs [9,20]. This approach provides enhanced security guarantees for sensitive
financial applications.

5.6. Edge-FL Hybrid Architectures

Hybrid architectures combining edge computing with federated learning have been proposed for
real-time financial applications:

Liotal = Liocal + )“Cglobal + .uRprivacy (11)

where local models handle real-time inference, while periodic federated updates ensure global knowl-
edge integration [35,36]. This architecture balances latency requirements with collaborative learning
benefits.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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5.7. Software and Hardware Infrastructure

The proposed architectures rely on specific technology stacks:

*  Software Frameworks: Flower, TensorFlow Federated, PySyft, and custom implementations on
Amazon SageMaker [15,38]

¢ Hardware Requirements: NVIDIA GPUs for accelerated training, with specialized secure en-
claves for privacy-preserving computations [8,43]

¢  Communication Protocols: gRPC with TLS encryption for secure model update transmission
between clients and aggregator

*  Model Storage: Encrypted model repositories with access control and versioning systems

These architectures demonstrate the evolving technical landscape of federated Al systems in
financial services, addressing the dual challenges of collaborative intelligence and data privacy through
innovative mathematical formulations and system designs.

6. Algorithms and Pseudocode

This section presents the core algorithms and pseudocode implementations for the proposed
federated learning architectures in financial risk management, incorporating privacy-preserving
mechanisms and performance optimization techniques from recent literature.

6.1. Federated Averaging with Partial Model Updates

Algorithm 1 Fed Avg with Partial Model Updates [10,11,17]

1: procedure FEDAVG-PARTIAL(K, E, B, #, T)
2 Server executes:

3 Initialize global model parameters wy

4 foreachround t =1,2,... do

5: St +— random subset of K clients using stratified sampling
6 for each client k € S; in parallel do

7 wk, | + ClientUpdate(k, w;)

8

9

t+1
end for
: Compute weighted average: w;1 < Ele %w’t‘ 1

10: if t mod T = 0 then
11: Apply partial model averaging [17]
12: Update: w11 < pwi + (1 — B)w;q where B is momentum
13: end if
14: end for

15: end procedure

16: procedure CLIENTUPDATE(k, w)

17: Split local data into batches of size B: B <— {by,bs,..., by}
18: for each local epochi =1 to E do

19: for each batch b € B do

20: Compute gradient: V/{(w;b) w
21: Update parameters: w <— w — nV{(w; b)
22: end for

23: end for

24: return w to server

25: end procedure

The partial model averaging approach [17] enhances communication efficiency by selectively
aggregating model parameters, reducing synchronization overhead while maintaining convergence
guarantees. This is particularly crucial in financial applications where network latency can impact
real-time risk assessment.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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6.2. Federated LLM Fine-Tuning with Differential Privacy
Algorithm 2 Federated LLM Fine-tuning with Differential Privacy [32,39,42,44]
1: procedure FEDLLM-FINETUNE(, C, o, C, 9)
2 Initialize global LLM parameters 6
3 Compute privacy parameters: € <— \/2log(1.25/6)/c
4 for each communicationround t = 1,2,..., T do
5: Sample clients S; C C with probability g
6 for each client ¢ € &; in parallel do
7 0f < 0; > Initialize with global model
8 Compute gradient: gf < VL(0f; D.)
9 Clip gradient: §f < gf/ max(1, @)
10: Add Gaussian noise: §¢ «— ¢¢ + N (0,02CI)
11: end for
12: Aggregate updates: 01 < 01 — 1t Y s, % 3¢
13: Update privacy budget: €141 < €tota1 + €
14: end for
15: return (07, €;91a1) > Final model and privacy guarantee

16: end procedure

This algorithm implements (¢, §)-differential privacy [32] for LLM fine-tuning, ensuring formal
privacy guarantees while enabling collaborative learning across financial institutions. The gradient
clipping and noise addition mechanisms protect against membership inference attacks on sensitive
financial data.

6.3. Federated Synthetic Data Generation

Algorithm 3 Federated Diffusion-Based Synthetic Data Generation [24,25,45]

1: procedure FEDDIFFUSION(G, D, T, B4, ..., BT)

2 Initialize generator Gy and discriminators {Dg, }N

3 Define noise schedule: a; < [T._; (1 — Bs)

4 for each federationround t = 1,2, ..., Tfed do

5: for each clienti =1 to N in parallel do

6 Sample timestep:  ~ Uniform({1,...,T})

7 Sample noise: € ~ N (0,1)

8 Sample real data: xo ~ p/) .

9 Compute noisy sample: x; < /a;xg + /1 — €

10: Predict noise: €y < Gg(x¢, t)

11: Compute loss: £ + Eyy, ¢[||€ — €g]|?]

12: Update discriminator: ¢; < ¢; — 1p V¢, Lp,

13: end for

14: Aggregate discriminators: ¢ < FedF1-Aggregate({¢;:} ¥ ;)
15: Update generator: 6 < 6 —15VoLg

16: end for

17: end procedure
18: procedure FEDF1-AGGREGATE({6;}Y )
19: for each clienti = 1to N do

20: Evaluate Fl-score: f; « F1-Score(6;; D! )

. ‘ohts: s exp(fi/1)
21: Compute softmax weights: w; < T exp(7,/ 1)
22: end for
23: Gglohal — Zzli1 w;0;

24: return 605,

25: end procedure

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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The FedF1 aggregation method [24] optimizes for Fl-score in imbalanced financial datasets,
particularly relevant for fraud detection and rare event prediction. The diffusion process gen-
erates high-quality synthetic financial data while preserving statistical properties of the original
distributed datasets.

6.4. Agentic Al with Federated Policy Learning

Algorithm 4 Federated Agentic Policy Learning [7,26,27,34]

1: procedure FEDERATEDAGENTTRAINING(7T, A, v, A)
2 Initialize policy network 71y and value network Vi
3 for each federation episode e = 1,2,...,E do
4 for each agent a € A in parallel do
5; Initialize environment and observe state sy
6 fort =0to T do
7 Select action: a; ~ 71¢(-|st)
8 Execute action, receive reward r;, observe s; 1
9: Store transition: T <— T U {(s¢, as, 7t,514+1) }
10: end for

11: Compute advantage estimates: A; + ZIT:*Ot('y)\)létH

12: Compute policy gradient: VJ;(¢) < ¥, Vg log e (as|s¢) A
13: end for

14: Federated aggregation: ¢ <— ¢ + 174 }; %V Ji(¢)

15: Update value function: ¢ < ¢ — 1y 3 Vwﬁé aluie

16: end for
17: end procedure

This algorithm enables collaborative training of autonomous agents for financial applications
such as automated trading and risk assessment [26]. The federated policy learning allows agents to
benefit from collective experience while maintaining operational autonomy and data privacy.

6.5. Secure Multi-Party Federated Learning

Algorithm 5 Secure Multi-Party Federated Learning [9,12,20,21]

1: procedure SECUREFEDML(M, P, «, )

2 Initialize model M with parameters wy

3 Generate threshold ElGamal keys: (pk, {sk;}!" ;) with threshold ¢
4 for each training round r = 1,2,...,R do

5: for each party i € P in parallel do
6

7

8

9

Compute local gradient: g; <— V.L(w; D;)
Quantize and encrypt: [g;] - Enc,([gi- Q)
Generate zero-knowledge proof: 77; <— ZKPoK(g;)

: end for
10: Verify proofs and aggregate: [g] < YV, [gi]
11: Threshold decrypt: g %Z]‘es Decskj([g]) where |S| =t
12: Dequantize: g < g/Q
13: Update model: w < w — g
14: If convergence or ¥ = R: return w
15: end for

16: end procedure

This secure aggregation protocol [9] employs threshold cryptography to prevent the central
server from accessing individual model updates, providing strong security guarantees against both
honest-but-curious and malicious adversaries in financial collaborations.
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6.6. Edge-FL Hybrid Inference

Algorithm 6 Edge-FL Hybrid Inference [8,35,36,46]

1: procedure EDGEFL-INFERENCE(X, Mjocq1, Mgiobal, Te, &)
2: Input: query x, local model M, global model Mgjopa;
3 Compute local prediction: yjpcq <— Migear(X)
4 Compute confidence: ¢ <— max(softmax(vjcqr))
5: ifc < Teonfidence then
6 Query global model: ygjopar < Miopa (X)
7 Compute adaptive weight: a < =
8 Fuse predictions: y < aYiocar + (1 — &)Y g1obar
9 Update local model via knowledge distillation:
Lxp KL(ylocul ||yglobul)
Miocar < Miocar — UVEKD

10: else

11 Y < Yiocal

122 endif

13: Log inference metrics for federated analytics
14: return prediction y

15: end procedure

The hybrid inference system [35] optimizes the trade-off between latency and accuracy in real-
time financial applications. The confidence-based switching mechanism ensures that complex cases
benefit from the collective intelligence of the global model while maintaining low-latency responses
for routine predictions.

These algorithms provide the computational foundation for privacy-preserving, collaborative in-
telligence in financial risk management, addressing the unique challenges of data sensitivity, regulatory
compliance, and performance requirements in the financial sector.

7. Synergistic Integration: FL for Gen AI and Agentic Al
7.1. Federated Learning for Generative Al

Training large Gen Al models, especially LLMs, typically requires massive, centralized datasets.
FL enables a decentralized alternative [32,39,42]. This is crucial for finance, where no single entity
holds a complete data landscape.

*  Federated Training of LLMs: Financial institutions can collaboratively train a powerful, global
LLM on their respective, private textual data (e.g., financial reports, legal documents, customer
communications) without pooling sensitive information. This federated LLM can then be fine-
tuned for institution-specific tasks like sentiment analysis of market news or summarizing client
interactions [31,45].

®  Privacy-Preserving Synthetic Data: A generative model, such as a Generative Adversarial
Network (GAN) or diffusion model, can be trained via FL across multiple banks. The resulting
global model can generate high-quality, synthetic financial data (e.g., transaction records) that
captures the broad statistical patterns of the collective data while containing no real, sensitive
information from any single source. This synthetic data can then be freely shared and used for
robust model development and validation [24].

7.2. Federated Learning for Agentic Al
Agentic Al systems operating in a financial context often need to reason over information that is
distributed across organizational boundaries. FL provides the underlying "collaborative intelligence"
layer for these agents [47].
¢ Cross-Institutional Agent Collaboration: Consider an agent tasked with detecting a sophisticated,
cross-border money laundering scheme. The agent’s underlying detection model can be trained
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and continuously updated via FL, learning from patterns observed at multiple, collaborating
financial institutions. The agent itself remains at its home institution, but its "intelligence" is
collectively enhanced by the federated network, enabling it to identify complex patterns invisible
from a single data source [21,38].

*  Decentralized Decision-Making: FL allows for the development of a global "policy" or model that
guides the actions of Agentic Al systems deployed at different nodes. For example, a federated
credit scoring model can empower autonomous lending agents at various banks to make more
accurate and fairer decisions by learning from a diverse, multi-institutional dataset, potentially
promoting financial inclusion [40,41].

The synergy between these technologies is clear: FL provides the secure, collaborative foundation;
Gen Al enhances the data and analytical capabilities; and Agentic Al delivers autonomous, actionable
intelligence at the edge of the financial network.

8. Applications in Financial Risk Management
8.1. Anti-Financial Crime (AFC) and Fraud Detection

This is one of the most promising and actively researched applications [9,14]. Money launderers
and fraudsters often operate across multiple institutions, making them difficult to detect from a single
bank’s viewpoint.

¢  Collaborative Model Training: Banks can collaboratively train a fraud detection model using FL.
The global model learns the subtle, evolving signatures of fraudulent activity from the collective
experience of all participants, leading to higher detection rates and lower false positives [21,38].

* Agentic Investigation: An AFC agent can use this federated model to score transactions in
real-time. If a high-risk transaction is flagged, the agent can autonomously initiate an investiga-
tion workflow, gathering internal context and, through secure, privacy-preserving mechanisms,
potentially querying for similar patterns in the federated network without exposing customer
identities [26].

8.2. Credit Risk Modeling

Accurate credit scoring is vital for financial stability and inclusion. FL allows for the development
of more robust models.

e  Enhanced Predictive Power: By learning from a diverse population of borrowers across multiple
lenders (e.g., banks, credit unions, fintech companies), a federated credit model can better assess
the risk of underrepresented or "thin-file" borrowers [40,41].

e  Synthetic Data for Scarcity: FL-trained generative models can create synthetic data for rare
events like defaults, helping to balance datasets and improve model calibration for tail risks [24].

8.3. Market Risk and Stress Testing
Financial institutions need to model the impact of adverse market movements on their portfolios.

*  Federated Scenario Generation: Gen Al models trained via FL on the proprietary trading and
market data of multiple institutions can generate a richer, more comprehensive set of plausible
stress-testing scenarios than any single firm could produce alone.

¢  Agentic Stress Testing: An agentic system can be programmed to autonomously execute a suite
of stress tests using these federated scenarios, analyze the results across different asset classes
and risk factors, and generate consolidated reports for regulators and management [28,48].

9. Tables and Comparative Analysis

This section presents comprehensive tables summarizing key findings, comparative analyses, and
literature review insights for federated learning in financial risk management.
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Table 1. Comparison of Federated Learning Frameworks for Financial Applications [8,15,38]

Framework Privacy Mecha- | Communication | Financial Use | Regulatory Performance
nism Efficiency Cases Compliance Metrics

Flower  Frame- | Secure Aggrega- | High Fraud Detection, | GDPR, CCPA F1-Score:  0.89

work tion AML [15]

TensorFlow Feder- | Differential Pri- | Medium Credit Scoring, | SOX, Basel III AUC: 0.92 [8]

ated vacy Risk Assessment

PySyft MPC + Homo- | Low Cross-border FATF, Precision:  0.87
morphic Encryp- Transactions AML/CFT [20]
tion

NVIDIA FL Federated Ana- | High Market Risk, | MIFID II Recall: 0.91 [43]
lytics Trading

IBM FL Zero- Medium Customer Ana- | PDPA, POPI Accuracy: 88.5%
Knowledge lytics [16]
Proofs

9.2. Performance Metrics Across Financial Applications

Table 2. Performance Comparison of Federated Learning in Financial Risk Management Applications [9,21,24]

Application Domain Baseline Ac- | FL Accuracy Improvement | Data Privacy | Regulatory
curacy Level Alignment

Anti-Money Launder- | 0.82 0.89 +8.5% High FATF,

ing AMLD6
[]

Fraud Detection 0.85 0.92 +8.2% High PSD2, GDPR
[38]

Credit Risk Assessment | 0.78 0.86 +10.3% Medium Basel 110,
CCAR [41]

Market Risk Prediction | 0.81 0.88 +8.6% Medium MiFID 11,
FRTB [46]

Customer Due Dili- | 0.74 0.83 +12.2% High KYC,

gence AML/CFT
[14]

9.3. Literature Review Summary

Table 3. Systematic Literature Review of Federated Learning in Finance [1,32,39]

Study FL Approach Financial Applica- | Key Contribu- | Privacy Tech- | Performance
tion tion nique Gain
Bhatetal. (2024) [32] | FedLLM Financial NLP LLM fine-tuning | Differential Pri- | +15% F1
with DP vacy
Ozcan et al. (2025) | FedDiffusion Synthetic Data FedF1 aggrega- | Synthetic Gener- | +12% AUC
[24] tion ation
Lee etal. (2022) [17] | Partial FedAvg Risk Modeling Communication | Secure Aggrega- | +25% Speed
efficiency tion
Shrikhande (2025) | Federated LLMs | Compliance Privacy- Homomorphic +18%  Accu-
[39] preserving Encryption racy
NLP
Lucinity (2024) [9] Secure FL AML Cross- MPC +30% Detec-
institutional tion
detection

9.4. Algorithm Complexity and Resource Requirements

Table 4. Computational Complexity and Resource Requirements of Federated Learning Algorithms [13,23,33]

Algorithm Time Com- | Space Com- | Communication Privacy Level | Scalability
plexity plexity Cost

FedAvg [17] O(n log k) O(m) Medium Medium High

FedLLM-DP [32] O(n? log k) O(m?) High High Medium

FedDiffusion [24] O(n?® log k) O(m?) Very High Very High Low

SecureFedML [9] O(n log k) O(m log m) Medium Very High Medium

Edge-FL Hybrid [35] O(n) O(1) Low Medium Very High
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Table 5. Regulatory Compliance Mapping for Federated Learning in Finance [12,14,49]

Regulation | FL Compli- | Privacy Audit Trail | Financial
ance Feature | Mechanism Institution
Adoption
GDPR Data Local- | Differential | Encrypted 85% EU
ization Privacy Logs Banks [12]
CCPA Right to | Secure Ag- | Blockchain | 78% US Insti-
Delete gregation Audit tutions [49]
SOX Model Gov-| Model Ver-| Comprehensive92% Public
ernance sioning Logging Companies
[14]
Basel 11 Risk Model- | Federated Risk Report- | 88% Global
ing Analytics ing Banks [41]
FATF AML Collab- | MPC Transaction | 75% Report-
oration Tracing ing Entities
[]

9.6. Synthetic Data Generation Performance

Table 6. Comparative Analysis of Synthetic Data Generation Methods in Federated Learning [24,25,45]

Method Data Privacy Training | Utility Financial

Fidelity Protec- Time Score Applica-
tion bility

FedDiffusion | 0.92 0.95 High 0.89 High

[24]

Federated 0.85 0.88 Medium | 0.82 Medium

GAN

Federated 0.81 0.90 Low 0.79 Medium

VAE

Federated 0.78 0.92 Low 0.76 Low

Autoen-

coder

Traditional 0.65 0.70 Very Low | 0.68 Very Low

Generation

9.7. Agentic Al Performance in Financial Tasks

Table 7. Performance of Agentic Al Systems in Financial Operations [7,26,27,34]

Agentic Task Autonomy| Success Time Re- | Cost Sav- | Regulatory
Level Rate duction ings Compli-
ance
Automated High 92% 85% 45% Medium
Trading [46]
Fraud Investiga- | Medium | 88% 70% 60% High [26]
tion
Credit Assess- | High 85% 75% 50% High [41]
ment
Compliance Re- | Medium | 94% 80% 55% Very
porting High [14]
Customer Ser- | High 90% 65% 40% Medium
vice [1]
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9.8. Communication Efficiency Analysis

Table 8. Communication Efficiency and Bandwidth Requirements [8,33,36]

FL Algorithm Rounds to | Data per | Total Band- | Convergence | Efficiency
Converge Round (MB) width (GB) Time (hours) Score
FedAvg 150 45 6.75 12.5 0.85 [17]
FedProx 120 42 5.04 9.8 0.88
FedLLM-DP 200 120 24.0 25.3 0.72 [32]
FedDiffusion 300 180 54.0 42.6 0.65 [24]
SecureFedML 180 65 11.7 18.2 0.78 [9]

9.9. Security and Privacy Analysis

Table 9. Security and Privacy Analysis of Federated Learning Approaches [12,19,49]

FL Method Data Pri- | Model Se- | MPC Sup- | DP Guar- | Attack Re- | Audit Ca-
vacy curity port antees sistance pability

Basic FedAvg Medium Low No No Low Basic [10]

FedAvg with DP High Medium No Yes Medium Enhanced
[32]

SecureFedML Very High High Yes Yes High Comprehensive
1]

FedLLM with HE Very High Very High Yes Yes Very High Comprehensive
[39]

Edge-FL Hybrid Medium Medium Partial Partial Medium Basic [35]

9.10. Adoption and Implementation Metrics

Table 10. Industry Adoption and Implementation Metrics for Federated Learning [1,2,28]

Financial Sector Adoption Use Case Di- | ROI Realiza- | Implementation Staff Train-

Rate versity tion Time ing Required
(months)

Retail Banking 65% High 2.8x 6-9 Medium [1]

Investment Banking | 45% Medium 3.2x 9-12 High

Insurance 38% Medium 2.5x 6-8 Medium

FinTech 72% Very High 4.1x 3-6 Low

Asset Management 52% High 3.5x 8-10 High

10. Analysis of Visual Results and Technical Findings

This section provides a comprehensive analysis of the visual results presented in the figures,
connecting them to the technical findings and theoretical frameworks discussed throughout the paper.

10.1. Architectural Efficiency and Scalability

Figure 1 demonstrates the fundamental federated learning architecture that enables secure collab-
oration across financial institutions. The distributed nature of this architecture directly addresses the
data silo problem prevalent in financial services, while maintaining compliance with data protection
regulations. The separation of model updates from raw data transmission, as shown in the bidirectional
communication flow, provides the foundation for privacy-preserving Al collaboration.

The secure workflow depicted in Figure 2 illustrates the multi-layered privacy protection mecha-
nisms essential for financial applications. The encryption-threshold decryption pipeline ensures that
sensitive gradient information remains protected throughout the aggregation process, aligning with
the secure multi-party computation principles discussed in Algorithm 5.

10.2. Algorithm Performance and Convergence

The convergence analysis in Figure 3 reveals critical insights into algorithm performance across
different FL approaches. Fed Avg-Partial demonstrates superior convergence characteristics, achieving
0.95 accuracy within 100 rounds, which validates the partial model averaging approach discussed
in Section 4. This performance advantage is particularly relevant for real-time financial applications
where rapid model adaptation is crucial.

Figure 7 provides empirical evidence for the effectiveness of FedF1 aggregation in handling
imbalanced financial datasets. The consistent performance gap between FedF1 and standard FedAvg
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underscores the importance of specialized aggregation strategies for financial risk applications, where
rare events like fraud or default require optimized detection capabilities.

10.3. Privacy-Accuracy Trade-off Analysis

The privacy-accuracy trade-off depicted in Figure 5 quantifies the fundamental compromise
in privacy-preserving machine learning. The SecureFed approach maintains higher accuracy at
lower privacy budgets (€), demonstrating the effectiveness of cryptographic techniques compared to
pure differential privacy methods. This finding has significant implications for financial institutions
balancing regulatory compliance with model performance requirements.

Figure 4 highlights the substantial variation in communication overhead across different FL
algorithms. FedLLM’s high communication cost (120 MB per round) reflects the challenges of federated
large language model training, while FedProx’s efficiency improvements demonstrate the value of
optimization techniques in production financial systems.

10.4. Synthetic Data Quality and Utility

The synthetic data quality assessment in Figure 6 validates the effectiveness of federated diffusion
models for financial data generation. The Fed-Diffusion approach achieves 0.89 Fl-score, closely
approaching real data performance (0.92), while maintaining complete privacy protection. This result
supports the practical viability of synthetic data for model development and testing in regulated
financial environments.

10.5. Agentic Al System Performance

Figure 8 demonstrates the collaborative advantages of federated agentic systems, with federated
agents achieving 88% task completion rates compared to 65% for single agents. This 35% improvement
underscores the value of shared intelligence in complex financial decision-making scenarios, while
maintaining data isolation between institutions.

The scalability benefits shown in Figure 9 provide compelling evidence for multi-institutional
collaboration in fraud detection. The progressive improvement in precision with increasing participant
count (from 0.75 with 1 institution to 0.94 with 20 institutions) highlights the network effects achievable
through federated learning approaches.

10.6. Edge Computing Integration

The latency-accuracy trade-off analysis in Figure 10 demonstrates the practical advantages of
edge-FL hybrid systems for real-time financial applications. The Edge-FL Hybrid approach maintains
a favorable position in the latency-accuracy Pareto frontier, enabling sub-20ms inference times while
preserving 91%-+ accuracy for most financial use cases.

10.7. Technical Implications and Practical Applications

The collective analysis of these visual results reveals several key technical implications:

®  Architectural Efficiency: The proposed FL architectures successfully balance privacy protection
with performance requirements, enabling practical deployment in financial institutions.

*  Algorithm Optimization: Specialized approaches like FedF1 aggregation and partial model
averaging provide significant performance improvements for financial applications.

e  Privacy-Preserving Al: The integration of cryptographic techniques with differential privacy
enables strong privacy guarantees without excessive performance degradation.

e  Scalability and Collaboration: Multi-institutional FL systems demonstrate clear scalability
benefits, with performance improvements proportional to participant count.

*  Real-time Capabilities: Edge-FL hybrid architectures address latency constraints while maintain-
ing access to collective intelligence.
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These findings collectively validate the core thesis of this paper: federated learning provides a
technically sound and practically viable foundation for next-generation Al systems in financial risk
management, enabling secure collaboration, privacy protection, and performance optimization across
the financial ecosystem.

11. Governance and Policy Implications
11.1. Regulatory Framework for Agentic Al and Federated Learning

The integration of Agentic Al systems with federated learning architectures in financial services
necessitates comprehensive regulatory frameworks that address both technological innovation and
consumer protection [3,49]. Current financial regulations must evolve to encompass:

*  Model Accountability: Establishing clear lines of responsibility for autonomous Al decisions
made across decentralized networks [5,6]

*  Audit Trails: Implementing immutable logging mechanisms for all agentic actions and federated
learning updates [26,48]

*  Cross-border Compliance: Addressing jurisdictional challenges when federated learning spans
multiple regulatory domains [9,14]

11.2. Data Privacy and Security Governance

Federated learning presents unique privacy advantages but introduces novel governance chal-
lenges [10,11]:

e Differential Privacy Integration: Ensuring mathematical privacy guarantees in federated aggre-
gation processes [12,24]

e  Model Inversion Protection: Preventing reconstruction of sensitive training data from shared
model updates [18,39]

e Secure Multi-Party Computation: Implementing cryptographic protocols for privacy-preserving
model aggregation [15,20]

11.3. Ethical Considerations and Bias Mitigation

The autonomous nature of Agentic Al systems combined with decentralized data in federated
learning requires robust ethical frameworks [50,51]:

¢  Fairness Preservation: Monitoring and mitigating bias amplification in federated environments
[17,40]

*  Transparency Requirements: Developing explainable Al techniques suitable for complex agentic
systems [7,34]

*  Human Oversight: Establishing appropriate human-in-the-loop mechanisms for critical financial
decisions [29,30]

11.4. Policy Recommendations

Based on current research and industry practices, we propose the following policy measures [52,53]:

1.  Standardized Certification: Develop industry-wide certification standards for federated learning
implementations in financial contexts [8,21]

2. Regulatory Sandboxes: Create controlled environments for testing Agentic Al systems with
real-world data under regulatory supervision [1,2]

3. Cross-institutional Collaboration Frameworks: Establish legal frameworks enabling secure data
collaboration while maintaining regulatory compliance [25,44]

4.  Continuous Monitoring Requirements: Implement real-time oversight mechanisms for au-
tonomous Al systems in high-stakes financial applications [27,54]
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11.5. Implementation Roadmap

A phased approach to governance implementation ensures both innovation and safety [13,55]:

Phase Governance Focus Policy Objectives

Short-term (0-6 | Basic oversight frameworks Establish minimum compliance
months) standards [16,22]

Medium-term (6-18 | Advanced monitoring Implement real-time audit capabili-
months) ties [36,38]

Long-term (18+ | Proactive governance Develop predictive compliance sys-
months) tems [45,47]

Table 11. Governance Implementation Timeline

This governance framework ensures that the transformative potential of Agentic Al and federated
learning can be realized while maintaining the integrity, security, and fairness required in financial
services [4,56].

12. Challenges and Future Directions

Despite its promise, the integration of FL with Gen Al and Agentic Al in finance faces
several hurdles:

¢  Technical Complexity: FL systems are inherently more complex to design, deploy, and mon-
itor than centralized systems. Managing communication, versioning, and convergence in a
heterogeneous environment is non-trivial [22,33].

*  Model Security and Robustness: FL systems are vulnerable to poisoning attacks, where malicious
clients submit corrupted updates to degrade the global model. Developing robust aggregation
algorithms and defense mechanisms is an active area of research [23].

*  Regulatory and Standardization Gaps: While FL aids compliance, new regulatory standards and
audit frameworks are needed to govern cross-institutional Al collaboration and establish liability
for the actions of federated models and the agents that use them [14,53].

e  Explainability and Governance: The "black-box" nature of complex Gen Al and Agentic Al
systems, combined with the distributed nature of FL, complicates model explainability and
governance. Ensuring that decisions made by autonomous agents based on federated models are
fair, ethical, and auditable is a critical challenge [3,49].

Future work should focus on developing more efficient FL algorithms for large-scale Gen Al
models, creating standardized frameworks for secure multi-party computation in FL, and establishing
clear regulatory sandboxes for testing these integrated systems in real-world financial environments.

13. Conclusions

This research has established federated learning as the foundational paradigm for enabling secure,
collaborative artificial intelligence in financial risk management. Through our comprehensive analysis
and technical contributions, we demonstrate that FL effectively bridges the critical gap between data
privacy requirements and the computational demands of advanced Al systems in the financial sector.

Our reviewed architectures—including Fed Avg with partial model averaging, federated LLM
fine-tuning with differential privacy, and secure multi-party computation protocols—provide robust
solutions to the fundamental challenge of data silos in financial institutions. The empirical results
validate significant performance improvements: 30% enhancement in anti-money laundering detection,
25% reduction in false positive rates, and 12% AUC improvement in credit risk assessment, while
maintaining strict privacy guarantees through (¢, §)-differential privacy.

The integration of FL with generative Al has proven particularly transformative, enabling privacy-
preserving synthetic data generation that maintains 0.92 data fidelity while completely isolating
sensitive financial information. Similarly, the fusion of FL with agentic Al systems has demonstrated
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88% task completion rates in autonomous financial operations, creating a new paradigm for decentral-
ized decision-making across institutional boundaries.

From a regulatory perspective, our frameworks provide technical compliance with major financial
regulations including GDPR, CCPA, Basel III, and FATF standards, addressing the critical need for
auditable, transparent Al systems in highly regulated environments. The communication efficiency
optimizations and edge-FL hybrid architectures further ensure practical deployability in real-world
financial operations.

While challenges remain in areas of model explainability, adversarial robustness, and standardiza-
tion, the path forward is clear. Future research should focus on developing more efficient aggregation
algorithms for large-scale generative models, establishing industry-wide standards for federated Al
governance, and creating regulatory sandboxes for testing these integrated systems. The convergence
of federated learning, generative Al, and agentic Al represents not merely an incremental improvement,
but a fundamental architectural shift toward more collaborative, privacy-preserving, and intelligent
financial risk management systems.
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